ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvfre Unicode version

Theorem dvfre 15378
Description: The derivative of a real function is real. (Contributed by Mario Carneiro, 1-Sep-2014.)
Assertion
Ref Expression
dvfre  |-  ( ( F : A --> RR  /\  A  C_  RR )  -> 
( RR  _D  F
) : dom  ( RR  _D  F ) --> RR )

Proof of Theorem dvfre
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-resscn 8087 . . . . . . 7  |-  RR  C_  CC
2 fss 5484 . . . . . . 7  |-  ( ( F : A --> RR  /\  RR  C_  CC )  ->  F : A --> CC )
31, 2mpan2 425 . . . . . 6  |-  ( F : A --> RR  ->  F : A --> CC )
43adantr 276 . . . . 5  |-  ( ( F : A --> RR  /\  A  C_  RR )  ->  F : A --> CC )
5 ffdm 5493 . . . . . 6  |-  ( F : A --> CC  ->  ( F : dom  F --> CC  /\  dom  F  C_  A ) )
65simpld 112 . . . . 5  |-  ( F : A --> CC  ->  F : dom  F --> CC )
74, 6syl 14 . . . 4  |-  ( ( F : A --> RR  /\  A  C_  RR )  ->  F : dom  F --> CC )
8 simpl 109 . . . . . 6  |-  ( ( F : A --> RR  /\  A  C_  RR )  ->  F : A --> RR )
98fdmd 5479 . . . . 5  |-  ( ( F : A --> RR  /\  A  C_  RR )  ->  dom  F  =  A )
10 simpr 110 . . . . 5  |-  ( ( F : A --> RR  /\  A  C_  RR )  ->  A  C_  RR )
119, 10eqsstrd 3260 . . . 4  |-  ( ( F : A --> RR  /\  A  C_  RR )  ->  dom  F  C_  RR )
12 cnex 8119 . . . . 5  |-  CC  e.  _V
13 reex 8129 . . . . 5  |-  RR  e.  _V
1412, 13elpm2 6825 . . . 4  |-  ( F  e.  ( CC  ^pm  RR )  <->  ( F : dom  F --> CC  /\  dom  F 
C_  RR ) )
157, 11, 14sylanbrc 417 . . 3  |-  ( ( F : A --> RR  /\  A  C_  RR )  ->  F  e.  ( CC  ^pm 
RR ) )
16 dvfpm 15357 . . 3  |-  ( F  e.  ( CC  ^pm  RR )  ->  ( RR  _D  F ) : dom  ( RR  _D  F
) --> CC )
17 ffn 5472 . . 3  |-  ( ( RR  _D  F ) : dom  ( RR 
_D  F ) --> CC 
->  ( RR  _D  F
)  Fn  dom  ( RR  _D  F ) )
1815, 16, 173syl 17 . 2  |-  ( ( F : A --> RR  /\  A  C_  RR )  -> 
( RR  _D  F
)  Fn  dom  ( RR  _D  F ) )
1915, 16syl 14 . . . . 5  |-  ( ( F : A --> RR  /\  A  C_  RR )  -> 
( RR  _D  F
) : dom  ( RR  _D  F ) --> CC )
2019ffvelcdmda 5769 . . . 4  |-  ( ( ( F : A --> RR  /\  A  C_  RR )  /\  x  e.  dom  ( RR  _D  F
) )  ->  (
( RR  _D  F
) `  x )  e.  CC )
21 fvco3 5704 . . . . . 6  |-  ( ( ( RR  _D  F
) : dom  ( RR  _D  F ) --> CC 
/\  x  e.  dom  ( RR  _D  F
) )  ->  (
( *  o.  ( RR  _D  F ) ) `
 x )  =  ( * `  (
( RR  _D  F
) `  x )
) )
2219, 21sylan 283 . . . . 5  |-  ( ( ( F : A --> RR  /\  A  C_  RR )  /\  x  e.  dom  ( RR  _D  F
) )  ->  (
( *  o.  ( RR  _D  F ) ) `
 x )  =  ( * `  (
( RR  _D  F
) `  x )
) )
23 dvcj 15377 . . . . . . . . 9  |-  ( ( F : A --> CC  /\  A  C_  RR )  -> 
( RR  _D  (
*  o.  F ) )  =  ( *  o.  ( RR  _D  F ) ) )
243, 23sylan 283 . . . . . . . 8  |-  ( ( F : A --> RR  /\  A  C_  RR )  -> 
( RR  _D  (
*  o.  F ) )  =  ( *  o.  ( RR  _D  F ) ) )
25 ffvelcdm 5767 . . . . . . . . . . . . 13  |-  ( ( F : A --> RR  /\  y  e.  A )  ->  ( F `  y
)  e.  RR )
2625adantlr 477 . . . . . . . . . . . 12  |-  ( ( ( F : A --> RR  /\  A  C_  RR )  /\  y  e.  A
)  ->  ( F `  y )  e.  RR )
2726cjred 11477 . . . . . . . . . . 11  |-  ( ( ( F : A --> RR  /\  A  C_  RR )  /\  y  e.  A
)  ->  ( * `  ( F `  y
) )  =  ( F `  y ) )
2827mpteq2dva 4173 . . . . . . . . . 10  |-  ( ( F : A --> RR  /\  A  C_  RR )  -> 
( y  e.  A  |->  ( * `  ( F `  y )
) )  =  ( y  e.  A  |->  ( F `  y ) ) )
2926recnd 8171 . . . . . . . . . . 11  |-  ( ( ( F : A --> RR  /\  A  C_  RR )  /\  y  e.  A
)  ->  ( F `  y )  e.  CC )
308feqmptd 5686 . . . . . . . . . . 11  |-  ( ( F : A --> RR  /\  A  C_  RR )  ->  F  =  ( y  e.  A  |->  ( F `
 y ) ) )
31 cjf 11353 . . . . . . . . . . . . 13  |-  * : CC --> CC
3231a1i 9 . . . . . . . . . . . 12  |-  ( ( F : A --> RR  /\  A  C_  RR )  ->  * : CC --> CC )
3332feqmptd 5686 . . . . . . . . . . 11  |-  ( ( F : A --> RR  /\  A  C_  RR )  ->  *  =  ( z  e.  CC  |->  ( * `  z ) ) )
34 fveq2 5626 . . . . . . . . . . 11  |-  ( z  =  ( F `  y )  ->  (
* `  z )  =  ( * `  ( F `  y ) ) )
3529, 30, 33, 34fmptco 5800 . . . . . . . . . 10  |-  ( ( F : A --> RR  /\  A  C_  RR )  -> 
( *  o.  F
)  =  ( y  e.  A  |->  ( * `
 ( F `  y ) ) ) )
3628, 35, 303eqtr4d 2272 . . . . . . . . 9  |-  ( ( F : A --> RR  /\  A  C_  RR )  -> 
( *  o.  F
)  =  F )
3736oveq2d 6016 . . . . . . . 8  |-  ( ( F : A --> RR  /\  A  C_  RR )  -> 
( RR  _D  (
*  o.  F ) )  =  ( RR 
_D  F ) )
3824, 37eqtr3d 2264 . . . . . . 7  |-  ( ( F : A --> RR  /\  A  C_  RR )  -> 
( *  o.  ( RR  _D  F ) )  =  ( RR  _D  F ) )
3938fveq1d 5628 . . . . . 6  |-  ( ( F : A --> RR  /\  A  C_  RR )  -> 
( ( *  o.  ( RR  _D  F
) ) `  x
)  =  ( ( RR  _D  F ) `
 x ) )
4039adantr 276 . . . . 5  |-  ( ( ( F : A --> RR  /\  A  C_  RR )  /\  x  e.  dom  ( RR  _D  F
) )  ->  (
( *  o.  ( RR  _D  F ) ) `
 x )  =  ( ( RR  _D  F ) `  x
) )
4122, 40eqtr3d 2264 . . . 4  |-  ( ( ( F : A --> RR  /\  A  C_  RR )  /\  x  e.  dom  ( RR  _D  F
) )  ->  (
* `  ( ( RR  _D  F ) `  x ) )  =  ( ( RR  _D  F ) `  x
) )
4220, 41cjrebd 11452 . . 3  |-  ( ( ( F : A --> RR  /\  A  C_  RR )  /\  x  e.  dom  ( RR  _D  F
) )  ->  (
( RR  _D  F
) `  x )  e.  RR )
4342ralrimiva 2603 . 2  |-  ( ( F : A --> RR  /\  A  C_  RR )  ->  A. x  e.  dom  ( RR  _D  F
) ( ( RR 
_D  F ) `  x )  e.  RR )
44 ffnfv 5792 . 2  |-  ( ( RR  _D  F ) : dom  ( RR 
_D  F ) --> RR  <->  ( ( RR  _D  F
)  Fn  dom  ( RR  _D  F )  /\  A. x  e.  dom  ( RR  _D  F ) ( ( RR  _D  F
) `  x )  e.  RR ) )
4518, 43, 44sylanbrc 417 1  |-  ( ( F : A --> RR  /\  A  C_  RR )  -> 
( RR  _D  F
) : dom  ( RR  _D  F ) --> RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   A.wral 2508    C_ wss 3197    |-> cmpt 4144   dom cdm 4718    o. ccom 4722    Fn wfn 5312   -->wf 5313   ` cfv 5317  (class class class)co 6000    ^pm cpm 6794   CCcc 7993   RRcr 7994   *ccj 11345    _D cdv 15323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-isom 5326  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-map 6795  df-pm 6796  df-sup 7147  df-inf 7148  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-xneg 9964  df-xadd 9965  df-ioo 10084  df-seqfrec 10665  df-exp 10756  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505  df-rest 13269  df-topgen 13288  df-psmet 14501  df-xmet 14502  df-met 14503  df-bl 14504  df-mopn 14505  df-top 14666  df-topon 14679  df-bases 14711  df-ntr 14764  df-cn 14856  df-cnp 14857  df-cncf 15239  df-limced 15324  df-dvap 15325
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator