ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ibir Unicode version

Theorem ibir 177
Description: Inference that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 22-Jul-2004.)
Hypothesis
Ref Expression
ibir.1  |-  ( ph  ->  ( ps  <->  ph ) )
Assertion
Ref Expression
ibir  |-  ( ph  ->  ps )

Proof of Theorem ibir
StepHypRef Expression
1 ibir.1 . . 3  |-  ( ph  ->  ( ps  <->  ph ) )
21bicomd 141 . 2  |-  ( ph  ->  ( ph  <->  ps )
)
32ibi 176 1  |-  ( ph  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm5.21nii  709  elpr2  3688  eusv2i  4546  ffdm  5494  ov  6124  ovg  6144  nnacl  6626  elpm2r  6813  ltnqpri  7781  ltxrlt  8212  uzaddcl  9781  expcllem  10772  qexpclz  10782  1exp  10790  facnn  10949  fac0  10950  fac1  10951  bcn2  10986  hash2en  11065  znnen  12969  zrhval  14581
  Copyright terms: Public domain W3C validator