ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ibir Unicode version

Theorem ibir 176
Description: Inference that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 22-Jul-2004.)
Hypothesis
Ref Expression
ibir.1  |-  ( ph  ->  ( ps  <->  ph ) )
Assertion
Ref Expression
ibir  |-  ( ph  ->  ps )

Proof of Theorem ibir
StepHypRef Expression
1 ibir.1 . . 3  |-  ( ph  ->  ( ps  <->  ph ) )
21bicomd 140 . 2  |-  ( ph  ->  ( ph  <->  ps )
)
32ibi 175 1  |-  ( ph  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  pm5.21nii  694  elpr2  3582  eusv2i  4414  ffdm  5339  ov  5937  ovg  5956  nnacl  6424  elpm2r  6608  ltnqpri  7508  ltxrlt  7937  uzaddcl  9491  expcllem  10423  qexpclz  10433  1exp  10441  facnn  10594  fac0  10595  fac1  10596  bcn2  10631  znnen  12110
  Copyright terms: Public domain W3C validator