| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ibir | Unicode version | ||
| Description: Inference that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 22-Jul-2004.) |
| Ref | Expression |
|---|---|
| ibir.1 |
|
| Ref | Expression |
|---|---|
| ibir |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ibir.1 |
. . 3
| |
| 2 | 1 | bicomd 141 |
. 2
|
| 3 | 2 | ibi 176 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm5.21nii 706 elpr2 3655 eusv2i 4503 ffdm 5448 ov 6067 ovg 6087 nnacl 6568 elpm2r 6755 ltnqpri 7709 ltxrlt 8140 uzaddcl 9709 expcllem 10697 qexpclz 10707 1exp 10715 facnn 10874 fac0 10875 fac1 10876 bcn2 10911 hash2en 10990 znnen 12802 zrhval 14412 |
| Copyright terms: Public domain | W3C validator |