ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ibir Unicode version

Theorem ibir 177
Description: Inference that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 22-Jul-2004.)
Hypothesis
Ref Expression
ibir.1  |-  ( ph  ->  ( ps  <->  ph ) )
Assertion
Ref Expression
ibir  |-  ( ph  ->  ps )

Proof of Theorem ibir
StepHypRef Expression
1 ibir.1 . . 3  |-  ( ph  ->  ( ps  <->  ph ) )
21bicomd 141 . 2  |-  ( ph  ->  ( ph  <->  ps )
)
32ibi 176 1  |-  ( ph  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm5.21nii  704  elpr2  3616  eusv2i  4457  ffdm  5388  ov  5996  ovg  6015  nnacl  6483  elpm2r  6668  ltnqpri  7595  ltxrlt  8025  uzaddcl  9588  expcllem  10533  qexpclz  10543  1exp  10551  facnn  10709  fac0  10710  fac1  10711  bcn2  10746  znnen  12401
  Copyright terms: Public domain W3C validator