ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ibir Unicode version

Theorem ibir 177
Description: Inference that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 22-Jul-2004.)
Hypothesis
Ref Expression
ibir.1  |-  ( ph  ->  ( ps  <->  ph ) )
Assertion
Ref Expression
ibir  |-  ( ph  ->  ps )

Proof of Theorem ibir
StepHypRef Expression
1 ibir.1 . . 3  |-  ( ph  ->  ( ps  <->  ph ) )
21bicomd 141 . 2  |-  ( ph  ->  ( ph  <->  ps )
)
32ibi 176 1  |-  ( ph  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm5.21nii  706  elpr2  3655  eusv2i  4502  ffdm  5446  ov  6065  ovg  6085  nnacl  6566  elpm2r  6753  ltnqpri  7707  ltxrlt  8138  uzaddcl  9707  expcllem  10695  qexpclz  10705  1exp  10713  facnn  10872  fac0  10873  fac1  10874  bcn2  10909  hash2en  10988  znnen  12769  zrhval  14379
  Copyright terms: Public domain W3C validator