| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ibir | Unicode version | ||
| Description: Inference that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 22-Jul-2004.) |
| Ref | Expression |
|---|---|
| ibir.1 |
|
| Ref | Expression |
|---|---|
| ibir |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ibir.1 |
. . 3
| |
| 2 | 1 | bicomd 141 |
. 2
|
| 3 | 2 | ibi 176 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm5.21nii 706 elpr2 3665 eusv2i 4520 ffdm 5466 ov 6088 ovg 6108 nnacl 6589 elpm2r 6776 ltnqpri 7742 ltxrlt 8173 uzaddcl 9742 expcllem 10732 qexpclz 10742 1exp 10750 facnn 10909 fac0 10910 fac1 10911 bcn2 10946 hash2en 11025 znnen 12884 zrhval 14494 |
| Copyright terms: Public domain | W3C validator |