| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ibir | Unicode version | ||
| Description: Inference that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 22-Jul-2004.) |
| Ref | Expression |
|---|---|
| ibir.1 |
|
| Ref | Expression |
|---|---|
| ibir |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ibir.1 |
. . 3
| |
| 2 | 1 | bicomd 141 |
. 2
|
| 3 | 2 | ibi 176 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm5.21nii 709 elpr2 3688 eusv2i 4546 ffdm 5494 ov 6124 ovg 6144 nnacl 6626 elpm2r 6813 ltnqpri 7781 ltxrlt 8212 uzaddcl 9781 expcllem 10772 qexpclz 10782 1exp 10790 facnn 10949 fac0 10950 fac1 10951 bcn2 10986 hash2en 11065 znnen 12969 zrhval 14581 |
| Copyright terms: Public domain | W3C validator |