| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ibir | Unicode version | ||
| Description: Inference that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 22-Jul-2004.) |
| Ref | Expression |
|---|---|
| ibir.1 |
|
| Ref | Expression |
|---|---|
| ibir |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ibir.1 |
. . 3
| |
| 2 | 1 | bicomd 141 |
. 2
|
| 3 | 2 | ibi 176 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm5.21nii 706 elpr2 3655 eusv2i 4502 ffdm 5446 ov 6065 ovg 6085 nnacl 6566 elpm2r 6753 ltnqpri 7707 ltxrlt 8138 uzaddcl 9707 expcllem 10695 qexpclz 10705 1exp 10713 facnn 10872 fac0 10873 fac1 10874 bcn2 10909 hash2en 10988 znnen 12769 zrhval 14379 |
| Copyright terms: Public domain | W3C validator |