| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ibir | Unicode version | ||
| Description: Inference that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 22-Jul-2004.) | 
| Ref | Expression | 
|---|---|
| ibir.1 | 
 | 
| Ref | Expression | 
|---|---|
| ibir | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ibir.1 | 
. . 3
 | |
| 2 | 1 | bicomd 141 | 
. 2
 | 
| 3 | 2 | ibi 176 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: pm5.21nii 705 elpr2 3644 eusv2i 4490 ffdm 5428 ov 6042 ovg 6062 nnacl 6538 elpm2r 6725 ltnqpri 7661 ltxrlt 8092 uzaddcl 9660 expcllem 10642 qexpclz 10652 1exp 10660 facnn 10819 fac0 10820 fac1 10821 bcn2 10856 znnen 12615 zrhval 14173 | 
| Copyright terms: Public domain | W3C validator |