ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ibir Unicode version

Theorem ibir 177
Description: Inference that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 22-Jul-2004.)
Hypothesis
Ref Expression
ibir.1  |-  ( ph  ->  ( ps  <->  ph ) )
Assertion
Ref Expression
ibir  |-  ( ph  ->  ps )

Proof of Theorem ibir
StepHypRef Expression
1 ibir.1 . . 3  |-  ( ph  ->  ( ps  <->  ph ) )
21bicomd 141 . 2  |-  ( ph  ->  ( ph  <->  ps )
)
32ibi 176 1  |-  ( ph  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm5.21nii  705  elpr2  3641  eusv2i  4487  ffdm  5425  ov  6039  ovg  6059  nnacl  6535  elpm2r  6722  ltnqpri  7656  ltxrlt  8087  uzaddcl  9654  expcllem  10624  qexpclz  10634  1exp  10642  facnn  10801  fac0  10802  fac1  10803  bcn2  10838  znnen  12558  zrhval  14116
  Copyright terms: Public domain W3C validator