Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ffdm | GIF version |
Description: A mapping is a partial function. (Contributed by NM, 25-Nov-2007.) |
Ref | Expression |
---|---|
ffdm | ⊢ (𝐹:𝐴⟶𝐵 → (𝐹:dom 𝐹⟶𝐵 ∧ dom 𝐹 ⊆ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fdm 5353 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
2 | 1 | feq2d 5335 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹:dom 𝐹⟶𝐵 ↔ 𝐹:𝐴⟶𝐵)) |
3 | 2 | ibir 176 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹:dom 𝐹⟶𝐵) |
4 | eqimss 3201 | . . 3 ⊢ (dom 𝐹 = 𝐴 → dom 𝐹 ⊆ 𝐴) | |
5 | 1, 4 | syl 14 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 ⊆ 𝐴) |
6 | 3, 5 | jca 304 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹:dom 𝐹⟶𝐵 ∧ dom 𝐹 ⊆ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ⊆ wss 3121 dom cdm 4611 ⟶wf 5194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-in 3127 df-ss 3134 df-fn 5201 df-f 5202 |
This theorem is referenced by: smoiso 6281 dvcj 13467 dvfre 13468 |
Copyright terms: Public domain | W3C validator |