| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ffdm | GIF version | ||
| Description: A mapping is a partial function. (Contributed by NM, 25-Nov-2007.) |
| Ref | Expression |
|---|---|
| ffdm | ⊢ (𝐹:𝐴⟶𝐵 → (𝐹:dom 𝐹⟶𝐵 ∧ dom 𝐹 ⊆ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fdm 5425 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
| 2 | 1 | feq2d 5407 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹:dom 𝐹⟶𝐵 ↔ 𝐹:𝐴⟶𝐵)) |
| 3 | 2 | ibir 177 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹:dom 𝐹⟶𝐵) |
| 4 | eqimss 3246 | . . 3 ⊢ (dom 𝐹 = 𝐴 → dom 𝐹 ⊆ 𝐴) | |
| 5 | 1, 4 | syl 14 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 ⊆ 𝐴) |
| 6 | 3, 5 | jca 306 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹:dom 𝐹⟶𝐵 ∧ dom 𝐹 ⊆ 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1372 ⊆ wss 3165 dom cdm 4673 ⟶wf 5264 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-in 3171 df-ss 3178 df-fn 5271 df-f 5272 |
| This theorem is referenced by: smoiso 6378 dvcj 15099 dvfre 15100 |
| Copyright terms: Public domain | W3C validator |