![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ffdm | GIF version |
Description: A mapping is a partial function. (Contributed by NM, 25-Nov-2007.) |
Ref | Expression |
---|---|
ffdm | ⊢ (𝐹:𝐴⟶𝐵 → (𝐹:dom 𝐹⟶𝐵 ∧ dom 𝐹 ⊆ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fdm 5383 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
2 | 1 | feq2d 5365 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹:dom 𝐹⟶𝐵 ↔ 𝐹:𝐴⟶𝐵)) |
3 | 2 | ibir 177 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹:dom 𝐹⟶𝐵) |
4 | eqimss 3221 | . . 3 ⊢ (dom 𝐹 = 𝐴 → dom 𝐹 ⊆ 𝐴) | |
5 | 1, 4 | syl 14 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 ⊆ 𝐴) |
6 | 3, 5 | jca 306 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹:dom 𝐹⟶𝐵 ∧ dom 𝐹 ⊆ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1363 ⊆ wss 3141 dom cdm 4638 ⟶wf 5224 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-11 1516 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 |
This theorem depends on definitions: df-bi 117 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-in 3147 df-ss 3154 df-fn 5231 df-f 5232 |
This theorem is referenced by: smoiso 6317 dvcj 14526 dvfre 14527 |
Copyright terms: Public domain | W3C validator |