ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ffdm GIF version

Theorem ffdm 5493
Description: A mapping is a partial function. (Contributed by NM, 25-Nov-2007.)
Assertion
Ref Expression
ffdm (𝐹:𝐴𝐵 → (𝐹:dom 𝐹𝐵 ∧ dom 𝐹𝐴))

Proof of Theorem ffdm
StepHypRef Expression
1 fdm 5478 . . . 4 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
21feq2d 5460 . . 3 (𝐹:𝐴𝐵 → (𝐹:dom 𝐹𝐵𝐹:𝐴𝐵))
32ibir 177 . 2 (𝐹:𝐴𝐵𝐹:dom 𝐹𝐵)
4 eqimss 3278 . . 3 (dom 𝐹 = 𝐴 → dom 𝐹𝐴)
51, 4syl 14 . 2 (𝐹:𝐴𝐵 → dom 𝐹𝐴)
63, 5jca 306 1 (𝐹:𝐴𝐵 → (𝐹:dom 𝐹𝐵 ∧ dom 𝐹𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wss 3197  dom cdm 4718  wf 5313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-in 3203  df-ss 3210  df-fn 5320  df-f 5321
This theorem is referenced by:  ffdmd  5494  smoiso  6446  dvcj  15377  dvfre  15378
  Copyright terms: Public domain W3C validator