ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnclima Unicode version

Theorem cnclima 12406
Description: A closed subset of the codomain of a continuous function has a closed preimage. (Contributed by NM, 15-Mar-2007.) (Revised by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cnclima  |-  ( ( F  e.  ( J  Cn  K )  /\  A  e.  ( Clsd `  K ) )  -> 
( `' F " A )  e.  (
Clsd `  J )
)

Proof of Theorem cnclima
StepHypRef Expression
1 eqid 2139 . . . . . 6  |-  U. J  =  U. J
2 eqid 2139 . . . . . 6  |-  U. K  =  U. K
31, 2cnf 12387 . . . . 5  |-  ( F  e.  ( J  Cn  K )  ->  F : U. J --> U. K
)
43adantr 274 . . . 4  |-  ( ( F  e.  ( J  Cn  K )  /\  A  e.  ( Clsd `  K ) )  ->  F : U. J --> U. K
)
5 ffun 5275 . . . . . 6  |-  ( F : U. J --> U. K  ->  Fun  F )
6 funcnvcnv 5182 . . . . . 6  |-  ( Fun 
F  ->  Fun  `' `' F )
7 imadif 5203 . . . . . 6  |-  ( Fun  `' `' F  ->  ( `' F " ( U. K  \  A ) )  =  ( ( `' F " U. K
)  \  ( `' F " A ) ) )
85, 6, 73syl 17 . . . . 5  |-  ( F : U. J --> U. K  ->  ( `' F "
( U. K  \  A ) )  =  ( ( `' F " U. K )  \ 
( `' F " A ) ) )
9 fimacnv 5549 . . . . . 6  |-  ( F : U. J --> U. K  ->  ( `' F " U. K )  =  U. J )
109difeq1d 3193 . . . . 5  |-  ( F : U. J --> U. K  ->  ( ( `' F " U. K )  \ 
( `' F " A ) )  =  ( U. J  \ 
( `' F " A ) ) )
118, 10eqtr2d 2173 . . . 4  |-  ( F : U. J --> U. K  ->  ( U. J  \ 
( `' F " A ) )  =  ( `' F "
( U. K  \  A ) ) )
124, 11syl 14 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  A  e.  ( Clsd `  K ) )  -> 
( U. J  \ 
( `' F " A ) )  =  ( `' F "
( U. K  \  A ) ) )
132cldopn 12290 . . . 4  |-  ( A  e.  ( Clsd `  K
)  ->  ( U. K  \  A )  e.  K )
14 cnima 12403 . . . 4  |-  ( ( F  e.  ( J  Cn  K )  /\  ( U. K  \  A
)  e.  K )  ->  ( `' F " ( U. K  \  A ) )  e.  J )
1513, 14sylan2 284 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  A  e.  ( Clsd `  K ) )  -> 
( `' F "
( U. K  \  A ) )  e.  J )
1612, 15eqeltrd 2216 . 2  |-  ( ( F  e.  ( J  Cn  K )  /\  A  e.  ( Clsd `  K ) )  -> 
( U. J  \ 
( `' F " A ) )  e.  J )
17 cntop1 12384 . . . 4  |-  ( F  e.  ( J  Cn  K )  ->  J  e.  Top )
1817adantr 274 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  A  e.  ( Clsd `  K ) )  ->  J  e.  Top )
19 cnvimass 4902 . . . 4  |-  ( `' F " A ) 
C_  dom  F
2019, 4fssdm 5287 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  A  e.  ( Clsd `  K ) )  -> 
( `' F " A )  C_  U. J
)
211iscld2 12287 . . 3  |-  ( ( J  e.  Top  /\  ( `' F " A ) 
C_  U. J )  -> 
( ( `' F " A )  e.  (
Clsd `  J )  <->  ( U. J  \  ( `' F " A ) )  e.  J ) )
2218, 20, 21syl2anc 408 . 2  |-  ( ( F  e.  ( J  Cn  K )  /\  A  e.  ( Clsd `  K ) )  -> 
( ( `' F " A )  e.  (
Clsd `  J )  <->  ( U. J  \  ( `' F " A ) )  e.  J ) )
2316, 22mpbird 166 1  |-  ( ( F  e.  ( J  Cn  K )  /\  A  e.  ( Clsd `  K ) )  -> 
( `' F " A )  e.  (
Clsd `  J )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480    \ cdif 3068    C_ wss 3071   U.cuni 3736   `'ccnv 4538   "cima 4542   Fun wfun 5117   -->wf 5119   ` cfv 5123  (class class class)co 5774   Topctop 12178   Clsdccld 12275    Cn ccn 12368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-map 6544  df-top 12179  df-topon 12192  df-cld 12278  df-cn 12371
This theorem is referenced by:  hmeocld  12495
  Copyright terms: Public domain W3C validator