Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnclima | Unicode version |
Description: A closed subset of the codomain of a continuous function has a closed preimage. (Contributed by NM, 15-Mar-2007.) (Revised by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
cnclima |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2170 | . . . . . 6 | |
2 | eqid 2170 | . . . . . 6 | |
3 | 1, 2 | cnf 12957 | . . . . 5 |
4 | 3 | adantr 274 | . . . 4 |
5 | ffun 5348 | . . . . . 6 | |
6 | funcnvcnv 5255 | . . . . . 6 | |
7 | imadif 5276 | . . . . . 6 | |
8 | 5, 6, 7 | 3syl 17 | . . . . 5 |
9 | fimacnv 5622 | . . . . . 6 | |
10 | 9 | difeq1d 3244 | . . . . 5 |
11 | 8, 10 | eqtr2d 2204 | . . . 4 |
12 | 4, 11 | syl 14 | . . 3 |
13 | 2 | cldopn 12860 | . . . 4 |
14 | cnima 12973 | . . . 4 | |
15 | 13, 14 | sylan2 284 | . . 3 |
16 | 12, 15 | eqeltrd 2247 | . 2 |
17 | cntop1 12954 | . . . 4 | |
18 | 17 | adantr 274 | . . 3 |
19 | cnvimass 4972 | . . . 4 | |
20 | 19, 4 | fssdm 5360 | . . 3 |
21 | 1 | iscld2 12857 | . . 3 |
22 | 18, 20, 21 | syl2anc 409 | . 2 |
23 | 16, 22 | mpbird 166 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 cdif 3118 wss 3121 cuni 3794 ccnv 4608 cima 4612 wfun 5190 wf 5192 cfv 5196 (class class class)co 5850 ctop 12748 ccld 12845 ccn 12938 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-fv 5204 df-ov 5853 df-oprab 5854 df-mpo 5855 df-1st 6116 df-2nd 6117 df-map 6624 df-top 12749 df-topon 12762 df-cld 12848 df-cn 12941 |
This theorem is referenced by: hmeocld 13065 |
Copyright terms: Public domain | W3C validator |