ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnclima Unicode version

Theorem cnclima 12431
Description: A closed subset of the codomain of a continuous function has a closed preimage. (Contributed by NM, 15-Mar-2007.) (Revised by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cnclima  |-  ( ( F  e.  ( J  Cn  K )  /\  A  e.  ( Clsd `  K ) )  -> 
( `' F " A )  e.  (
Clsd `  J )
)

Proof of Theorem cnclima
StepHypRef Expression
1 eqid 2140 . . . . . 6  |-  U. J  =  U. J
2 eqid 2140 . . . . . 6  |-  U. K  =  U. K
31, 2cnf 12412 . . . . 5  |-  ( F  e.  ( J  Cn  K )  ->  F : U. J --> U. K
)
43adantr 274 . . . 4  |-  ( ( F  e.  ( J  Cn  K )  /\  A  e.  ( Clsd `  K ) )  ->  F : U. J --> U. K
)
5 ffun 5283 . . . . . 6  |-  ( F : U. J --> U. K  ->  Fun  F )
6 funcnvcnv 5190 . . . . . 6  |-  ( Fun 
F  ->  Fun  `' `' F )
7 imadif 5211 . . . . . 6  |-  ( Fun  `' `' F  ->  ( `' F " ( U. K  \  A ) )  =  ( ( `' F " U. K
)  \  ( `' F " A ) ) )
85, 6, 73syl 17 . . . . 5  |-  ( F : U. J --> U. K  ->  ( `' F "
( U. K  \  A ) )  =  ( ( `' F " U. K )  \ 
( `' F " A ) ) )
9 fimacnv 5557 . . . . . 6  |-  ( F : U. J --> U. K  ->  ( `' F " U. K )  =  U. J )
109difeq1d 3198 . . . . 5  |-  ( F : U. J --> U. K  ->  ( ( `' F " U. K )  \ 
( `' F " A ) )  =  ( U. J  \ 
( `' F " A ) ) )
118, 10eqtr2d 2174 . . . 4  |-  ( F : U. J --> U. K  ->  ( U. J  \ 
( `' F " A ) )  =  ( `' F "
( U. K  \  A ) ) )
124, 11syl 14 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  A  e.  ( Clsd `  K ) )  -> 
( U. J  \ 
( `' F " A ) )  =  ( `' F "
( U. K  \  A ) ) )
132cldopn 12315 . . . 4  |-  ( A  e.  ( Clsd `  K
)  ->  ( U. K  \  A )  e.  K )
14 cnima 12428 . . . 4  |-  ( ( F  e.  ( J  Cn  K )  /\  ( U. K  \  A
)  e.  K )  ->  ( `' F " ( U. K  \  A ) )  e.  J )
1513, 14sylan2 284 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  A  e.  ( Clsd `  K ) )  -> 
( `' F "
( U. K  \  A ) )  e.  J )
1612, 15eqeltrd 2217 . 2  |-  ( ( F  e.  ( J  Cn  K )  /\  A  e.  ( Clsd `  K ) )  -> 
( U. J  \ 
( `' F " A ) )  e.  J )
17 cntop1 12409 . . . 4  |-  ( F  e.  ( J  Cn  K )  ->  J  e.  Top )
1817adantr 274 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  A  e.  ( Clsd `  K ) )  ->  J  e.  Top )
19 cnvimass 4910 . . . 4  |-  ( `' F " A ) 
C_  dom  F
2019, 4fssdm 5295 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  A  e.  ( Clsd `  K ) )  -> 
( `' F " A )  C_  U. J
)
211iscld2 12312 . . 3  |-  ( ( J  e.  Top  /\  ( `' F " A ) 
C_  U. J )  -> 
( ( `' F " A )  e.  (
Clsd `  J )  <->  ( U. J  \  ( `' F " A ) )  e.  J ) )
2218, 20, 21syl2anc 409 . 2  |-  ( ( F  e.  ( J  Cn  K )  /\  A  e.  ( Clsd `  K ) )  -> 
( ( `' F " A )  e.  (
Clsd `  J )  <->  ( U. J  \  ( `' F " A ) )  e.  J ) )
2316, 22mpbird 166 1  |-  ( ( F  e.  ( J  Cn  K )  /\  A  e.  ( Clsd `  K ) )  -> 
( `' F " A )  e.  (
Clsd `  J )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332    e. wcel 1481    \ cdif 3073    C_ wss 3076   U.cuni 3744   `'ccnv 4546   "cima 4550   Fun wfun 5125   -->wf 5127   ` cfv 5131  (class class class)co 5782   Topctop 12203   Clsdccld 12300    Cn ccn 12393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-map 6552  df-top 12204  df-topon 12217  df-cld 12303  df-cn 12396
This theorem is referenced by:  hmeocld  12520
  Copyright terms: Public domain W3C validator