| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fco | Unicode version | ||
| Description: Composition of two mappings. (Contributed by NM, 29-Aug-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| fco |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f 5322 |
. . 3
| |
| 2 | df-f 5322 |
. . 3
| |
| 3 | fnco 5431 |
. . . . . . 7
| |
| 4 | 3 | 3expib 1230 |
. . . . . 6
|
| 5 | 4 | adantr 276 |
. . . . 5
|
| 6 | rncoss 4995 |
. . . . . . 7
| |
| 7 | sstr 3232 |
. . . . . . 7
| |
| 8 | 6, 7 | mpan 424 |
. . . . . 6
|
| 9 | 8 | adantl 277 |
. . . . 5
|
| 10 | 5, 9 | jctird 317 |
. . . 4
|
| 11 | 10 | imp 124 |
. . 3
|
| 12 | 1, 2, 11 | syl2anb 291 |
. 2
|
| 13 | df-f 5322 |
. 2
| |
| 14 | 12, 13 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-fun 5320 df-fn 5321 df-f 5322 |
| This theorem is referenced by: fco2 5490 f1co 5543 foco 5559 mapen 7007 ctm 7276 enomnilem 7305 enmkvlem 7328 enwomnilem 7336 fnn0nninf 10660 seqf1oglem2 10742 fsumcl2lem 11909 fsumadd 11917 fprodmul 12102 algcvg 12570 mhmco 13523 gsumwmhm 13531 gsumfzreidx 13874 gsumfzmhm 13880 psrnegcl 14647 cnco 14895 cnptopco 14896 lmtopcnp 14924 cnmpt11 14957 cnmpt21 14965 comet 15173 cnmet 15204 cnfldms 15210 cncfco 15265 limccnpcntop 15349 dvcoapbr 15381 dvcjbr 15382 dvcj 15383 |
| Copyright terms: Public domain | W3C validator |