| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fco | Unicode version | ||
| Description: Composition of two mappings. (Contributed by NM, 29-Aug-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| fco |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f 5276 |
. . 3
| |
| 2 | df-f 5276 |
. . 3
| |
| 3 | fnco 5385 |
. . . . . . 7
| |
| 4 | 3 | 3expib 1209 |
. . . . . 6
|
| 5 | 4 | adantr 276 |
. . . . 5
|
| 6 | rncoss 4950 |
. . . . . . 7
| |
| 7 | sstr 3201 |
. . . . . . 7
| |
| 8 | 6, 7 | mpan 424 |
. . . . . 6
|
| 9 | 8 | adantl 277 |
. . . . 5
|
| 10 | 5, 9 | jctird 317 |
. . . 4
|
| 11 | 10 | imp 124 |
. . 3
|
| 12 | 1, 2, 11 | syl2anb 291 |
. 2
|
| 13 | df-f 5276 |
. 2
| |
| 14 | 12, 13 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-br 4046 df-opab 4107 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-fun 5274 df-fn 5275 df-f 5276 |
| This theorem is referenced by: fco2 5444 f1co 5495 foco 5511 mapen 6945 ctm 7213 enomnilem 7242 enmkvlem 7265 enwomnilem 7273 fnn0nninf 10585 seqf1oglem2 10667 fsumcl2lem 11742 fsumadd 11750 fprodmul 11935 algcvg 12403 mhmco 13355 gsumwmhm 13363 gsumfzreidx 13706 gsumfzmhm 13712 psrnegcl 14478 cnco 14726 cnptopco 14727 lmtopcnp 14755 cnmpt11 14788 cnmpt21 14796 comet 15004 cnmet 15035 cnfldms 15041 cncfco 15096 limccnpcntop 15180 dvcoapbr 15212 dvcjbr 15213 dvcj 15214 |
| Copyright terms: Public domain | W3C validator |