ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fco Unicode version

Theorem fco 5443
Description: Composition of two mappings. (Contributed by NM, 29-Aug-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fco  |-  ( ( F : B --> C  /\  G : A --> B )  ->  ( F  o.  G ) : A --> C )

Proof of Theorem fco
StepHypRef Expression
1 df-f 5276 . . 3  |-  ( F : B --> C  <->  ( F  Fn  B  /\  ran  F  C_  C ) )
2 df-f 5276 . . 3  |-  ( G : A --> B  <->  ( G  Fn  A  /\  ran  G  C_  B ) )
3 fnco 5385 . . . . . . 7  |-  ( ( F  Fn  B  /\  G  Fn  A  /\  ran  G  C_  B )  ->  ( F  o.  G
)  Fn  A )
433expib 1209 . . . . . 6  |-  ( F  Fn  B  ->  (
( G  Fn  A  /\  ran  G  C_  B
)  ->  ( F  o.  G )  Fn  A
) )
54adantr 276 . . . . 5  |-  ( ( F  Fn  B  /\  ran  F  C_  C )  ->  ( ( G  Fn  A  /\  ran  G  C_  B )  ->  ( F  o.  G )  Fn  A ) )
6 rncoss 4950 . . . . . . 7  |-  ran  ( F  o.  G )  C_ 
ran  F
7 sstr 3201 . . . . . . 7  |-  ( ( ran  ( F  o.  G )  C_  ran  F  /\  ran  F  C_  C )  ->  ran  ( F  o.  G
)  C_  C )
86, 7mpan 424 . . . . . 6  |-  ( ran 
F  C_  C  ->  ran  ( F  o.  G
)  C_  C )
98adantl 277 . . . . 5  |-  ( ( F  Fn  B  /\  ran  F  C_  C )  ->  ran  ( F  o.  G )  C_  C
)
105, 9jctird 317 . . . 4  |-  ( ( F  Fn  B  /\  ran  F  C_  C )  ->  ( ( G  Fn  A  /\  ran  G  C_  B )  ->  (
( F  o.  G
)  Fn  A  /\  ran  ( F  o.  G
)  C_  C )
) )
1110imp 124 . . 3  |-  ( ( ( F  Fn  B  /\  ran  F  C_  C
)  /\  ( G  Fn  A  /\  ran  G  C_  B ) )  -> 
( ( F  o.  G )  Fn  A  /\  ran  ( F  o.  G )  C_  C
) )
121, 2, 11syl2anb 291 . 2  |-  ( ( F : B --> C  /\  G : A --> B )  ->  ( ( F  o.  G )  Fn  A  /\  ran  ( F  o.  G )  C_  C ) )
13 df-f 5276 . 2  |-  ( ( F  o.  G ) : A --> C  <->  ( ( F  o.  G )  Fn  A  /\  ran  ( F  o.  G )  C_  C ) )
1412, 13sylibr 134 1  |-  ( ( F : B --> C  /\  G : A --> B )  ->  ( F  o.  G ) : A --> C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    C_ wss 3166   ran crn 4677    o. ccom 4680    Fn wfn 5267   -->wf 5268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4046  df-opab 4107  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-fun 5274  df-fn 5275  df-f 5276
This theorem is referenced by:  fco2  5444  f1co  5495  foco  5511  mapen  6945  ctm  7213  enomnilem  7242  enmkvlem  7265  enwomnilem  7273  fnn0nninf  10585  seqf1oglem2  10667  fsumcl2lem  11742  fsumadd  11750  fprodmul  11935  algcvg  12403  mhmco  13355  gsumwmhm  13363  gsumfzreidx  13706  gsumfzmhm  13712  psrnegcl  14478  cnco  14726  cnptopco  14727  lmtopcnp  14755  cnmpt11  14788  cnmpt21  14796  comet  15004  cnmet  15035  cnfldms  15041  cncfco  15096  limccnpcntop  15180  dvcoapbr  15212  dvcjbr  15213  dvcj  15214
  Copyright terms: Public domain W3C validator