ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fco Unicode version

Theorem fco 5176
Description: Composition of two mappings. (Contributed by NM, 29-Aug-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fco  |-  ( ( F : B --> C  /\  G : A --> B )  ->  ( F  o.  G ) : A --> C )

Proof of Theorem fco
StepHypRef Expression
1 df-f 5019 . . 3  |-  ( F : B --> C  <->  ( F  Fn  B  /\  ran  F  C_  C ) )
2 df-f 5019 . . 3  |-  ( G : A --> B  <->  ( G  Fn  A  /\  ran  G  C_  B ) )
3 fnco 5122 . . . . . . 7  |-  ( ( F  Fn  B  /\  G  Fn  A  /\  ran  G  C_  B )  ->  ( F  o.  G
)  Fn  A )
433expib 1146 . . . . . 6  |-  ( F  Fn  B  ->  (
( G  Fn  A  /\  ran  G  C_  B
)  ->  ( F  o.  G )  Fn  A
) )
54adantr 270 . . . . 5  |-  ( ( F  Fn  B  /\  ran  F  C_  C )  ->  ( ( G  Fn  A  /\  ran  G  C_  B )  ->  ( F  o.  G )  Fn  A ) )
6 rncoss 4703 . . . . . . 7  |-  ran  ( F  o.  G )  C_ 
ran  F
7 sstr 3033 . . . . . . 7  |-  ( ( ran  ( F  o.  G )  C_  ran  F  /\  ran  F  C_  C )  ->  ran  ( F  o.  G
)  C_  C )
86, 7mpan 415 . . . . . 6  |-  ( ran 
F  C_  C  ->  ran  ( F  o.  G
)  C_  C )
98adantl 271 . . . . 5  |-  ( ( F  Fn  B  /\  ran  F  C_  C )  ->  ran  ( F  o.  G )  C_  C
)
105, 9jctird 310 . . . 4  |-  ( ( F  Fn  B  /\  ran  F  C_  C )  ->  ( ( G  Fn  A  /\  ran  G  C_  B )  ->  (
( F  o.  G
)  Fn  A  /\  ran  ( F  o.  G
)  C_  C )
) )
1110imp 122 . . 3  |-  ( ( ( F  Fn  B  /\  ran  F  C_  C
)  /\  ( G  Fn  A  /\  ran  G  C_  B ) )  -> 
( ( F  o.  G )  Fn  A  /\  ran  ( F  o.  G )  C_  C
) )
121, 2, 11syl2anb 285 . 2  |-  ( ( F : B --> C  /\  G : A --> B )  ->  ( ( F  o.  G )  Fn  A  /\  ran  ( F  o.  G )  C_  C ) )
13 df-f 5019 . 2  |-  ( ( F  o.  G ) : A --> C  <->  ( ( F  o.  G )  Fn  A  /\  ran  ( F  o.  G )  C_  C ) )
1412, 13sylibr 132 1  |-  ( ( F : B --> C  /\  G : A --> B )  ->  ( F  o.  G ) : A --> C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    C_ wss 2999   ran crn 4439    o. ccom 4442    Fn wfn 5010   -->wf 5011
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-br 3846  df-opab 3900  df-id 4120  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-fun 5017  df-fn 5018  df-f 5019
This theorem is referenced by:  fco2  5177  f1co  5228  foco  5243  mapen  6560  enomnilem  6792  fnn0nninf  9839  fsumcl2lem  10788  fsumadd  10796  ialgcvg  11304  cncfco  11602
  Copyright terms: Public domain W3C validator