| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > fco | Unicode version | ||
| Description: Composition of two mappings. (Contributed by NM, 29-Aug-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) | 
| Ref | Expression | 
|---|---|
| fco | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-f 5262 | 
. . 3
 | |
| 2 | df-f 5262 | 
. . 3
 | |
| 3 | fnco 5366 | 
. . . . . . 7
 | |
| 4 | 3 | 3expib 1208 | 
. . . . . 6
 | 
| 5 | 4 | adantr 276 | 
. . . . 5
 | 
| 6 | rncoss 4936 | 
. . . . . . 7
 | |
| 7 | sstr 3191 | 
. . . . . . 7
 | |
| 8 | 6, 7 | mpan 424 | 
. . . . . 6
 | 
| 9 | 8 | adantl 277 | 
. . . . 5
 | 
| 10 | 5, 9 | jctird 317 | 
. . . 4
 | 
| 11 | 10 | imp 124 | 
. . 3
 | 
| 12 | 1, 2, 11 | syl2anb 291 | 
. 2
 | 
| 13 | df-f 5262 | 
. 2
 | |
| 14 | 12, 13 | sylibr 134 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-fun 5260 df-fn 5261 df-f 5262 | 
| This theorem is referenced by: fco2 5424 f1co 5475 foco 5491 mapen 6907 ctm 7175 enomnilem 7204 enmkvlem 7227 enwomnilem 7235 fnn0nninf 10530 seqf1oglem2 10612 fsumcl2lem 11563 fsumadd 11571 fprodmul 11756 algcvg 12216 mhmco 13122 gsumwmhm 13130 gsumfzreidx 13467 gsumfzmhm 13473 cnco 14457 cnptopco 14458 lmtopcnp 14486 cnmpt11 14519 cnmpt21 14527 comet 14735 cnmet 14766 cnfldms 14772 cncfco 14827 limccnpcntop 14911 dvcoapbr 14943 dvcjbr 14944 dvcj 14945 | 
| Copyright terms: Public domain | W3C validator |