| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fco | Unicode version | ||
| Description: Composition of two mappings. (Contributed by NM, 29-Aug-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| fco |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f 5294 |
. . 3
| |
| 2 | df-f 5294 |
. . 3
| |
| 3 | fnco 5403 |
. . . . . . 7
| |
| 4 | 3 | 3expib 1209 |
. . . . . 6
|
| 5 | 4 | adantr 276 |
. . . . 5
|
| 6 | rncoss 4968 |
. . . . . . 7
| |
| 7 | sstr 3209 |
. . . . . . 7
| |
| 8 | 6, 7 | mpan 424 |
. . . . . 6
|
| 9 | 8 | adantl 277 |
. . . . 5
|
| 10 | 5, 9 | jctird 317 |
. . . 4
|
| 11 | 10 | imp 124 |
. . 3
|
| 12 | 1, 2, 11 | syl2anb 291 |
. 2
|
| 13 | df-f 5294 |
. 2
| |
| 14 | 12, 13 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-fun 5292 df-fn 5293 df-f 5294 |
| This theorem is referenced by: fco2 5462 f1co 5515 foco 5531 mapen 6968 ctm 7237 enomnilem 7266 enmkvlem 7289 enwomnilem 7297 fnn0nninf 10620 seqf1oglem2 10702 fsumcl2lem 11824 fsumadd 11832 fprodmul 12017 algcvg 12485 mhmco 13437 gsumwmhm 13445 gsumfzreidx 13788 gsumfzmhm 13794 psrnegcl 14560 cnco 14808 cnptopco 14809 lmtopcnp 14837 cnmpt11 14870 cnmpt21 14878 comet 15086 cnmet 15117 cnfldms 15123 cncfco 15178 limccnpcntop 15262 dvcoapbr 15294 dvcjbr 15295 dvcj 15296 |
| Copyright terms: Public domain | W3C validator |