| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fco | Unicode version | ||
| Description: Composition of two mappings. (Contributed by NM, 29-Aug-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| fco |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f 5275 |
. . 3
| |
| 2 | df-f 5275 |
. . 3
| |
| 3 | fnco 5384 |
. . . . . . 7
| |
| 4 | 3 | 3expib 1209 |
. . . . . 6
|
| 5 | 4 | adantr 276 |
. . . . 5
|
| 6 | rncoss 4949 |
. . . . . . 7
| |
| 7 | sstr 3201 |
. . . . . . 7
| |
| 8 | 6, 7 | mpan 424 |
. . . . . 6
|
| 9 | 8 | adantl 277 |
. . . . 5
|
| 10 | 5, 9 | jctird 317 |
. . . 4
|
| 11 | 10 | imp 124 |
. . 3
|
| 12 | 1, 2, 11 | syl2anb 291 |
. 2
|
| 13 | df-f 5275 |
. 2
| |
| 14 | 12, 13 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-fun 5273 df-fn 5274 df-f 5275 |
| This theorem is referenced by: fco2 5442 f1co 5493 foco 5509 mapen 6943 ctm 7211 enomnilem 7240 enmkvlem 7263 enwomnilem 7271 fnn0nninf 10583 seqf1oglem2 10665 fsumcl2lem 11709 fsumadd 11717 fprodmul 11902 algcvg 12370 mhmco 13322 gsumwmhm 13330 gsumfzreidx 13673 gsumfzmhm 13679 psrnegcl 14445 cnco 14693 cnptopco 14694 lmtopcnp 14722 cnmpt11 14755 cnmpt21 14763 comet 14971 cnmet 15002 cnfldms 15008 cncfco 15063 limccnpcntop 15147 dvcoapbr 15179 dvcjbr 15180 dvcj 15181 |
| Copyright terms: Public domain | W3C validator |