ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseqtrid Unicode version

Theorem sseqtrid 3247
Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypotheses
Ref Expression
sseqtrid.1  |-  B  C_  A
sseqtrid.2  |-  ( ph  ->  A  =  C )
Assertion
Ref Expression
sseqtrid  |-  ( ph  ->  B  C_  C )

Proof of Theorem sseqtrid
StepHypRef Expression
1 sseqtrid.2 . 2  |-  ( ph  ->  A  =  C )
2 sseqtrid.1 . 2  |-  B  C_  A
3 sseq2 3221 . . 3  |-  ( A  =  C  ->  ( B  C_  A  <->  B  C_  C
) )
43biimpa 296 . 2  |-  ( ( A  =  C  /\  B  C_  A )  ->  B  C_  C )
51, 2, 4sylancl 413 1  |-  ( ph  ->  B  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    C_ wss 3170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-in 3176  df-ss 3183
This theorem is referenced by:  fssdm  5450  fndmdif  5698  fneqeql2  5702  fconst4m  5817  f1opw2  6165  ecss  6676  pw2f1odclem  6946  fopwdom  6948  ssenen  6963  phplem2  6965  fiintim  7043  casefun  7202  caseinj  7206  djufun  7221  djuinj  7223  nn0supp  9367  monoord2  10653  binom1dif  11873  znleval  14490  cnpnei  14766  cnntri  14771  cnntr  14772  cncnp  14777  cndis  14788  txdis1cn  14825  hmeontr  14860  hmeoimaf1o  14861  dvcoapbr  15254
  Copyright terms: Public domain W3C validator