ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseqtrid Unicode version

Theorem sseqtrid 3207
Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypotheses
Ref Expression
sseqtrid.1  |-  B  C_  A
sseqtrid.2  |-  ( ph  ->  A  =  C )
Assertion
Ref Expression
sseqtrid  |-  ( ph  ->  B  C_  C )

Proof of Theorem sseqtrid
StepHypRef Expression
1 sseqtrid.2 . 2  |-  ( ph  ->  A  =  C )
2 sseqtrid.1 . 2  |-  B  C_  A
3 sseq2 3181 . . 3  |-  ( A  =  C  ->  ( B  C_  A  <->  B  C_  C
) )
43biimpa 296 . 2  |-  ( ( A  =  C  /\  B  C_  A )  ->  B  C_  C )
51, 2, 4sylancl 413 1  |-  ( ph  ->  B  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    C_ wss 3131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-in 3137  df-ss 3144
This theorem is referenced by:  fssdm  5382  fndmdif  5623  fneqeql2  5627  fconst4m  5738  f1opw2  6079  ecss  6578  fopwdom  6838  ssenen  6853  phplem2  6855  fiintim  6930  casefun  7086  caseinj  7090  djufun  7105  djuinj  7107  nn0supp  9230  monoord2  10479  binom1dif  11497  cnpnei  13804  cnntri  13809  cnntr  13810  cncnp  13815  cndis  13826  txdis1cn  13863  hmeontr  13898  hmeoimaf1o  13899  dvcoapbr  14256
  Copyright terms: Public domain W3C validator