| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseqtrid | Unicode version | ||
| Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| sseqtrid.1 |
|
| sseqtrid.2 |
|
| Ref | Expression |
|---|---|
| sseqtrid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqtrid.2 |
. 2
| |
| 2 | sseqtrid.1 |
. 2
| |
| 3 | sseq2 3248 |
. . 3
| |
| 4 | 3 | biimpa 296 |
. 2
|
| 5 | 1, 2, 4 | sylancl 413 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: fssdm 5487 fndmdif 5739 fneqeql2 5743 fconst4m 5858 f1opw2 6210 ecss 6721 pw2f1odclem 6991 fopwdom 6993 ssenen 7008 phplem2 7010 fiintim 7089 casefun 7248 caseinj 7252 djufun 7267 djuinj 7269 nn0supp 9417 monoord2 10703 binom1dif 11993 znleval 14611 cnpnei 14887 cnntri 14892 cnntr 14893 cncnp 14898 cndis 14909 txdis1cn 14946 hmeontr 14981 hmeoimaf1o 14982 dvcoapbr 15375 |
| Copyright terms: Public domain | W3C validator |