| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseqtrid | Unicode version | ||
| Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| sseqtrid.1 |
|
| sseqtrid.2 |
|
| Ref | Expression |
|---|---|
| sseqtrid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqtrid.2 |
. 2
| |
| 2 | sseqtrid.1 |
. 2
| |
| 3 | sseq2 3208 |
. . 3
| |
| 4 | 3 | biimpa 296 |
. 2
|
| 5 | 1, 2, 4 | sylancl 413 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: fssdm 5425 fndmdif 5670 fneqeql2 5674 fconst4m 5785 f1opw2 6133 ecss 6644 pw2f1odclem 6904 fopwdom 6906 ssenen 6921 phplem2 6923 fiintim 7001 casefun 7160 caseinj 7164 djufun 7179 djuinj 7181 nn0supp 9320 monoord2 10597 binom1dif 11671 znleval 14287 cnpnei 14563 cnntri 14568 cnntr 14569 cncnp 14574 cndis 14585 txdis1cn 14622 hmeontr 14657 hmeoimaf1o 14658 dvcoapbr 15051 |
| Copyright terms: Public domain | W3C validator |