Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sseqtrid | Unicode version |
Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
sseqtrid.1 | |
sseqtrid.2 |
Ref | Expression |
---|---|
sseqtrid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseqtrid.2 | . 2 | |
2 | sseqtrid.1 | . 2 | |
3 | sseq2 3152 | . . 3 | |
4 | 3 | biimpa 294 | . 2 |
5 | 1, 2, 4 | sylancl 410 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1335 wss 3102 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-11 1486 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-in 3108 df-ss 3115 |
This theorem is referenced by: fssdm 5331 fndmdif 5569 fneqeql2 5573 fconst4m 5684 f1opw2 6020 ecss 6514 fopwdom 6774 ssenen 6789 phplem2 6791 fiintim 6866 casefun 7019 caseinj 7023 djufun 7038 djuinj 7040 nn0supp 9125 monoord2 10358 binom1dif 11366 cnpnei 12579 cnntri 12584 cnntr 12585 cncnp 12590 cndis 12601 txdis1cn 12638 hmeontr 12673 hmeoimaf1o 12674 dvcoapbr 13031 |
Copyright terms: Public domain | W3C validator |