| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseqtrid | Unicode version | ||
| Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| sseqtrid.1 |
|
| sseqtrid.2 |
|
| Ref | Expression |
|---|---|
| sseqtrid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqtrid.2 |
. 2
| |
| 2 | sseqtrid.1 |
. 2
| |
| 3 | sseq2 3221 |
. . 3
| |
| 4 | 3 | biimpa 296 |
. 2
|
| 5 | 1, 2, 4 | sylancl 413 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-in 3176 df-ss 3183 |
| This theorem is referenced by: fssdm 5450 fndmdif 5698 fneqeql2 5702 fconst4m 5817 f1opw2 6165 ecss 6676 pw2f1odclem 6946 fopwdom 6948 ssenen 6963 phplem2 6965 fiintim 7043 casefun 7202 caseinj 7206 djufun 7221 djuinj 7223 nn0supp 9367 monoord2 10653 binom1dif 11873 znleval 14490 cnpnei 14766 cnntri 14771 cnntr 14772 cncnp 14777 cndis 14788 txdis1cn 14825 hmeontr 14860 hmeoimaf1o 14861 dvcoapbr 15254 |
| Copyright terms: Public domain | W3C validator |