| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseqtrid | Unicode version | ||
| Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| sseqtrid.1 |
|
| sseqtrid.2 |
|
| Ref | Expression |
|---|---|
| sseqtrid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqtrid.2 |
. 2
| |
| 2 | sseqtrid.1 |
. 2
| |
| 3 | sseq2 3216 |
. . 3
| |
| 4 | 3 | biimpa 296 |
. 2
|
| 5 | 1, 2, 4 | sylancl 413 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-in 3171 df-ss 3178 |
| This theorem is referenced by: fssdm 5439 fndmdif 5684 fneqeql2 5688 fconst4m 5803 f1opw2 6151 ecss 6662 pw2f1odclem 6930 fopwdom 6932 ssenen 6947 phplem2 6949 fiintim 7027 casefun 7186 caseinj 7190 djufun 7205 djuinj 7207 nn0supp 9346 monoord2 10629 binom1dif 11740 znleval 14357 cnpnei 14633 cnntri 14638 cnntr 14639 cncnp 14644 cndis 14655 txdis1cn 14692 hmeontr 14727 hmeoimaf1o 14728 dvcoapbr 15121 |
| Copyright terms: Public domain | W3C validator |