ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmeter Unicode version

Theorem xmeter 12594
Description: The "finitely separated" relation is an equivalence relation. (Contributed by Mario Carneiro, 24-Aug-2015.)
Hypothesis
Ref Expression
xmeter.1  |-  .~  =  ( `' D " RR )
Assertion
Ref Expression
xmeter  |-  ( D  e.  ( *Met `  X )  ->  .~  Er  X )

Proof of Theorem xmeter
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xmeter.1 . . . . 5  |-  .~  =  ( `' D " RR )
2 cnvimass 4897 . . . . 5  |-  ( `' D " RR ) 
C_  dom  D
31, 2eqsstri 3124 . . . 4  |-  .~  C_  dom  D
4 xmetf 12508 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  D : ( X  X.  X ) --> RR* )
53, 4fssdm 5282 . . 3  |-  ( D  e.  ( *Met `  X )  ->  .~  C_  ( X  X.  X ) )
6 relxp 4643 . . 3  |-  Rel  ( X  X.  X )
7 relss 4621 . . 3  |-  (  .~  C_  ( X  X.  X
)  ->  ( Rel  ( X  X.  X
)  ->  Rel  .~  )
)
85, 6, 7mpisyl 1422 . 2  |-  ( D  e.  ( *Met `  X )  ->  Rel  .~  )
91xmeterval 12593 . . . . 5  |-  ( D  e.  ( *Met `  X )  ->  (
x  .~  y  <->  ( x  e.  X  /\  y  e.  X  /\  (
x D y )  e.  RR ) ) )
109biimpa 294 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  x  .~  y
)  ->  ( x  e.  X  /\  y  e.  X  /\  (
x D y )  e.  RR ) )
1110simp2d 994 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  x  .~  y
)  ->  y  e.  X )
1210simp1d 993 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  x  .~  y
)  ->  x  e.  X )
13 simpl 108 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  x  .~  y
)  ->  D  e.  ( *Met `  X
) )
14 xmetsym 12526 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  x  e.  X  /\  y  e.  X
)  ->  ( x D y )  =  ( y D x ) )
1513, 12, 11, 14syl3anc 1216 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  x  .~  y
)  ->  ( x D y )  =  ( y D x ) )
1610simp3d 995 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  x  .~  y
)  ->  ( x D y )  e.  RR )
1715, 16eqeltrrd 2215 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  x  .~  y
)  ->  ( y D x )  e.  RR )
181xmeterval 12593 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  (
y  .~  x  <->  ( y  e.  X  /\  x  e.  X  /\  (
y D x )  e.  RR ) ) )
1918adantr 274 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  x  .~  y
)  ->  ( y  .~  x  <->  ( y  e.  X  /\  x  e.  X  /\  ( y D x )  e.  RR ) ) )
2011, 12, 17, 19mpbir3and 1164 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  x  .~  y
)  ->  y  .~  x )
2112adantrr 470 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  ( x  .~  y  /\  y  .~  z
) )  ->  x  e.  X )
221xmeterval 12593 . . . . . 6  |-  ( D  e.  ( *Met `  X )  ->  (
y  .~  z  <->  ( y  e.  X  /\  z  e.  X  /\  (
y D z )  e.  RR ) ) )
2322biimpa 294 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  y  .~  z
)  ->  ( y  e.  X  /\  z  e.  X  /\  (
y D z )  e.  RR ) )
2423adantrl 469 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  ( x  .~  y  /\  y  .~  z
) )  ->  (
y  e.  X  /\  z  e.  X  /\  ( y D z )  e.  RR ) )
2524simp2d 994 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  ( x  .~  y  /\  y  .~  z
) )  ->  z  e.  X )
26 simpl 108 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  ( x  .~  y  /\  y  .~  z
) )  ->  D  e.  ( *Met `  X ) )
2716adantrr 470 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  ( x  .~  y  /\  y  .~  z
) )  ->  (
x D y )  e.  RR )
2824simp3d 995 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  ( x  .~  y  /\  y  .~  z
) )  ->  (
y D z )  e.  RR )
29 rexadd 9628 . . . . . 6  |-  ( ( ( x D y )  e.  RR  /\  ( y D z )  e.  RR )  ->  ( ( x D y ) +e ( y D z ) )  =  ( ( x D y )  +  ( y D z ) ) )
30 readdcl 7739 . . . . . 6  |-  ( ( ( x D y )  e.  RR  /\  ( y D z )  e.  RR )  ->  ( ( x D y )  +  ( y D z ) )  e.  RR )
3129, 30eqeltrd 2214 . . . . 5  |-  ( ( ( x D y )  e.  RR  /\  ( y D z )  e.  RR )  ->  ( ( x D y ) +e ( y D z ) )  e.  RR )
3227, 28, 31syl2anc 408 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  ( x  .~  y  /\  y  .~  z
) )  ->  (
( x D y ) +e ( y D z ) )  e.  RR )
3311adantrr 470 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  ( x  .~  y  /\  y  .~  z
) )  ->  y  e.  X )
34 xmettri 12530 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  ( x  e.  X  /\  z  e.  X  /\  y  e.  X ) )  -> 
( x D z )  <_  ( (
x D y ) +e ( y D z ) ) )
3526, 21, 25, 33, 34syl13anc 1218 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  ( x  .~  y  /\  y  .~  z
) )  ->  (
x D z )  <_  ( ( x D y ) +e ( y D z ) ) )
36 xmetlecl 12525 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  ( x  e.  X  /\  z  e.  X )  /\  (
( ( x D y ) +e
( y D z ) )  e.  RR  /\  ( x D z )  <_  ( (
x D y ) +e ( y D z ) ) ) )  ->  (
x D z )  e.  RR )
3726, 21, 25, 32, 35, 36syl122anc 1225 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  ( x  .~  y  /\  y  .~  z
) )  ->  (
x D z )  e.  RR )
381xmeterval 12593 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  (
x  .~  z  <->  ( x  e.  X  /\  z  e.  X  /\  (
x D z )  e.  RR ) ) )
3938adantr 274 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  ( x  .~  y  /\  y  .~  z
) )  ->  (
x  .~  z  <->  ( x  e.  X  /\  z  e.  X  /\  (
x D z )  e.  RR ) ) )
4021, 25, 37, 39mpbir3and 1164 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  ( x  .~  y  /\  y  .~  z
) )  ->  x  .~  z )
41 xmet0 12521 . . . . . . 7  |-  ( ( D  e.  ( *Met `  X )  /\  x  e.  X
)  ->  ( x D x )  =  0 )
42 0re 7759 . . . . . . 7  |-  0  e.  RR
4341, 42eqeltrdi 2228 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  x  e.  X
)  ->  ( x D x )  e.  RR )
4443ex 114 . . . . 5  |-  ( D  e.  ( *Met `  X )  ->  (
x  e.  X  -> 
( x D x )  e.  RR ) )
4544pm4.71rd 391 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  (
x  e.  X  <->  ( (
x D x )  e.  RR  /\  x  e.  X ) ) )
46 df-3an 964 . . . . 5  |-  ( ( x  e.  X  /\  x  e.  X  /\  ( x D x )  e.  RR )  <-> 
( ( x  e.  X  /\  x  e.  X )  /\  (
x D x )  e.  RR ) )
47 anidm 393 . . . . . 6  |-  ( ( x  e.  X  /\  x  e.  X )  <->  x  e.  X )
4847anbi2ci 454 . . . . 5  |-  ( ( ( x  e.  X  /\  x  e.  X
)  /\  ( x D x )  e.  RR )  <->  ( (
x D x )  e.  RR  /\  x  e.  X ) )
4946, 48bitri 183 . . . 4  |-  ( ( x  e.  X  /\  x  e.  X  /\  ( x D x )  e.  RR )  <-> 
( ( x D x )  e.  RR  /\  x  e.  X ) )
5045, 49syl6bbr 197 . . 3  |-  ( D  e.  ( *Met `  X )  ->  (
x  e.  X  <->  ( x  e.  X  /\  x  e.  X  /\  (
x D x )  e.  RR ) ) )
511xmeterval 12593 . . 3  |-  ( D  e.  ( *Met `  X )  ->  (
x  .~  x  <->  ( x  e.  X  /\  x  e.  X  /\  (
x D x )  e.  RR ) ) )
5250, 51bitr4d 190 . 2  |-  ( D  e.  ( *Met `  X )  ->  (
x  e.  X  <->  x  .~  x ) )
538, 20, 40, 52iserd 6448 1  |-  ( D  e.  ( *Met `  X )  ->  .~  Er  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    = wceq 1331    e. wcel 1480    C_ wss 3066   class class class wbr 3924    X. cxp 4532   `'ccnv 4533   dom cdm 4534   "cima 4537   Rel wrel 4539   ` cfv 5118  (class class class)co 5767    Er wer 6419   RRcr 7612   0cc0 7613    + caddc 7616   RR*cxr 7792    <_ cle 7794   +ecxad 9550   *Metcxmet 12138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-po 4213  df-iso 4214  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-er 6422  df-map 6537  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-2 8772  df-xadd 9553  df-xmet 12146
This theorem is referenced by:  blpnfctr  12597  xmetresbl  12598
  Copyright terms: Public domain W3C validator