ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmeter Unicode version

Theorem xmeter 14604
Description: The "finitely separated" relation is an equivalence relation. (Contributed by Mario Carneiro, 24-Aug-2015.)
Hypothesis
Ref Expression
xmeter.1  |-  .~  =  ( `' D " RR )
Assertion
Ref Expression
xmeter  |-  ( D  e.  ( *Met `  X )  ->  .~  Er  X )

Proof of Theorem xmeter
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xmeter.1 . . . . 5  |-  .~  =  ( `' D " RR )
2 cnvimass 5028 . . . . 5  |-  ( `' D " RR ) 
C_  dom  D
31, 2eqsstri 3211 . . . 4  |-  .~  C_  dom  D
4 xmetf 14518 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  D : ( X  X.  X ) --> RR* )
53, 4fssdm 5418 . . 3  |-  ( D  e.  ( *Met `  X )  ->  .~  C_  ( X  X.  X ) )
6 relxp 4768 . . 3  |-  Rel  ( X  X.  X )
7 relss 4746 . . 3  |-  (  .~  C_  ( X  X.  X
)  ->  ( Rel  ( X  X.  X
)  ->  Rel  .~  )
)
85, 6, 7mpisyl 1457 . 2  |-  ( D  e.  ( *Met `  X )  ->  Rel  .~  )
91xmeterval 14603 . . . . 5  |-  ( D  e.  ( *Met `  X )  ->  (
x  .~  y  <->  ( x  e.  X  /\  y  e.  X  /\  (
x D y )  e.  RR ) ) )
109biimpa 296 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  x  .~  y
)  ->  ( x  e.  X  /\  y  e.  X  /\  (
x D y )  e.  RR ) )
1110simp2d 1012 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  x  .~  y
)  ->  y  e.  X )
1210simp1d 1011 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  x  .~  y
)  ->  x  e.  X )
13 simpl 109 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  x  .~  y
)  ->  D  e.  ( *Met `  X
) )
14 xmetsym 14536 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  x  e.  X  /\  y  e.  X
)  ->  ( x D y )  =  ( y D x ) )
1513, 12, 11, 14syl3anc 1249 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  x  .~  y
)  ->  ( x D y )  =  ( y D x ) )
1610simp3d 1013 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  x  .~  y
)  ->  ( x D y )  e.  RR )
1715, 16eqeltrrd 2271 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  x  .~  y
)  ->  ( y D x )  e.  RR )
181xmeterval 14603 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  (
y  .~  x  <->  ( y  e.  X  /\  x  e.  X  /\  (
y D x )  e.  RR ) ) )
1918adantr 276 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  x  .~  y
)  ->  ( y  .~  x  <->  ( y  e.  X  /\  x  e.  X  /\  ( y D x )  e.  RR ) ) )
2011, 12, 17, 19mpbir3and 1182 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  x  .~  y
)  ->  y  .~  x )
2112adantrr 479 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  ( x  .~  y  /\  y  .~  z
) )  ->  x  e.  X )
221xmeterval 14603 . . . . . 6  |-  ( D  e.  ( *Met `  X )  ->  (
y  .~  z  <->  ( y  e.  X  /\  z  e.  X  /\  (
y D z )  e.  RR ) ) )
2322biimpa 296 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  y  .~  z
)  ->  ( y  e.  X  /\  z  e.  X  /\  (
y D z )  e.  RR ) )
2423adantrl 478 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  ( x  .~  y  /\  y  .~  z
) )  ->  (
y  e.  X  /\  z  e.  X  /\  ( y D z )  e.  RR ) )
2524simp2d 1012 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  ( x  .~  y  /\  y  .~  z
) )  ->  z  e.  X )
26 simpl 109 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  ( x  .~  y  /\  y  .~  z
) )  ->  D  e.  ( *Met `  X ) )
2716adantrr 479 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  ( x  .~  y  /\  y  .~  z
) )  ->  (
x D y )  e.  RR )
2824simp3d 1013 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  ( x  .~  y  /\  y  .~  z
) )  ->  (
y D z )  e.  RR )
29 rexadd 9918 . . . . . 6  |-  ( ( ( x D y )  e.  RR  /\  ( y D z )  e.  RR )  ->  ( ( x D y ) +e ( y D z ) )  =  ( ( x D y )  +  ( y D z ) ) )
30 readdcl 7998 . . . . . 6  |-  ( ( ( x D y )  e.  RR  /\  ( y D z )  e.  RR )  ->  ( ( x D y )  +  ( y D z ) )  e.  RR )
3129, 30eqeltrd 2270 . . . . 5  |-  ( ( ( x D y )  e.  RR  /\  ( y D z )  e.  RR )  ->  ( ( x D y ) +e ( y D z ) )  e.  RR )
3227, 28, 31syl2anc 411 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  ( x  .~  y  /\  y  .~  z
) )  ->  (
( x D y ) +e ( y D z ) )  e.  RR )
3311adantrr 479 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  ( x  .~  y  /\  y  .~  z
) )  ->  y  e.  X )
34 xmettri 14540 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  ( x  e.  X  /\  z  e.  X  /\  y  e.  X ) )  -> 
( x D z )  <_  ( (
x D y ) +e ( y D z ) ) )
3526, 21, 25, 33, 34syl13anc 1251 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  ( x  .~  y  /\  y  .~  z
) )  ->  (
x D z )  <_  ( ( x D y ) +e ( y D z ) ) )
36 xmetlecl 14535 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  ( x  e.  X  /\  z  e.  X )  /\  (
( ( x D y ) +e
( y D z ) )  e.  RR  /\  ( x D z )  <_  ( (
x D y ) +e ( y D z ) ) ) )  ->  (
x D z )  e.  RR )
3726, 21, 25, 32, 35, 36syl122anc 1258 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  ( x  .~  y  /\  y  .~  z
) )  ->  (
x D z )  e.  RR )
381xmeterval 14603 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  (
x  .~  z  <->  ( x  e.  X  /\  z  e.  X  /\  (
x D z )  e.  RR ) ) )
3938adantr 276 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  ( x  .~  y  /\  y  .~  z
) )  ->  (
x  .~  z  <->  ( x  e.  X  /\  z  e.  X  /\  (
x D z )  e.  RR ) ) )
4021, 25, 37, 39mpbir3and 1182 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  ( x  .~  y  /\  y  .~  z
) )  ->  x  .~  z )
41 xmet0 14531 . . . . . . 7  |-  ( ( D  e.  ( *Met `  X )  /\  x  e.  X
)  ->  ( x D x )  =  0 )
42 0re 8019 . . . . . . 7  |-  0  e.  RR
4341, 42eqeltrdi 2284 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  x  e.  X
)  ->  ( x D x )  e.  RR )
4443ex 115 . . . . 5  |-  ( D  e.  ( *Met `  X )  ->  (
x  e.  X  -> 
( x D x )  e.  RR ) )
4544pm4.71rd 394 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  (
x  e.  X  <->  ( (
x D x )  e.  RR  /\  x  e.  X ) ) )
46 df-3an 982 . . . . 5  |-  ( ( x  e.  X  /\  x  e.  X  /\  ( x D x )  e.  RR )  <-> 
( ( x  e.  X  /\  x  e.  X )  /\  (
x D x )  e.  RR ) )
47 anidm 396 . . . . . 6  |-  ( ( x  e.  X  /\  x  e.  X )  <->  x  e.  X )
4847anbi2ci 459 . . . . 5  |-  ( ( ( x  e.  X  /\  x  e.  X
)  /\  ( x D x )  e.  RR )  <->  ( (
x D x )  e.  RR  /\  x  e.  X ) )
4946, 48bitri 184 . . . 4  |-  ( ( x  e.  X  /\  x  e.  X  /\  ( x D x )  e.  RR )  <-> 
( ( x D x )  e.  RR  /\  x  e.  X ) )
5045, 49bitr4di 198 . . 3  |-  ( D  e.  ( *Met `  X )  ->  (
x  e.  X  <->  ( x  e.  X  /\  x  e.  X  /\  (
x D x )  e.  RR ) ) )
511xmeterval 14603 . . 3  |-  ( D  e.  ( *Met `  X )  ->  (
x  .~  x  <->  ( x  e.  X  /\  x  e.  X  /\  (
x D x )  e.  RR ) ) )
5250, 51bitr4d 191 . 2  |-  ( D  e.  ( *Met `  X )  ->  (
x  e.  X  <->  x  .~  x ) )
538, 20, 40, 52iserd 6613 1  |-  ( D  e.  ( *Met `  X )  ->  .~  Er  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164    C_ wss 3153   class class class wbr 4029    X. cxp 4657   `'ccnv 4658   dom cdm 4659   "cima 4662   Rel wrel 4664   ` cfv 5254  (class class class)co 5918    Er wer 6584   RRcr 7871   0cc0 7872    + caddc 7875   RR*cxr 8053    <_ cle 8055   +ecxad 9836   *Metcxmet 14032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-po 4327  df-iso 4328  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-er 6587  df-map 6704  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-2 9041  df-xadd 9839  df-xmet 14040
This theorem is referenced by:  blpnfctr  14607  xmetresbl  14608
  Copyright terms: Public domain W3C validator