| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xmeter | Unicode version | ||
| Description: The "finitely separated" relation is an equivalence relation. (Contributed by Mario Carneiro, 24-Aug-2015.) |
| Ref | Expression |
|---|---|
| xmeter.1 |
|
| Ref | Expression |
|---|---|
| xmeter |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xmeter.1 |
. . . . 5
| |
| 2 | cnvimass 5090 |
. . . . 5
| |
| 3 | 1, 2 | eqsstri 3256 |
. . . 4
|
| 4 | xmetf 15018 |
. . . 4
| |
| 5 | 3, 4 | fssdm 5487 |
. . 3
|
| 6 | relxp 4827 |
. . 3
| |
| 7 | relss 4805 |
. . 3
| |
| 8 | 5, 6, 7 | mpisyl 1489 |
. 2
|
| 9 | 1 | xmeterval 15103 |
. . . . 5
|
| 10 | 9 | biimpa 296 |
. . . 4
|
| 11 | 10 | simp2d 1034 |
. . 3
|
| 12 | 10 | simp1d 1033 |
. . 3
|
| 13 | simpl 109 |
. . . . 5
| |
| 14 | xmetsym 15036 |
. . . . 5
| |
| 15 | 13, 12, 11, 14 | syl3anc 1271 |
. . . 4
|
| 16 | 10 | simp3d 1035 |
. . . 4
|
| 17 | 15, 16 | eqeltrrd 2307 |
. . 3
|
| 18 | 1 | xmeterval 15103 |
. . . 4
|
| 19 | 18 | adantr 276 |
. . 3
|
| 20 | 11, 12, 17, 19 | mpbir3and 1204 |
. 2
|
| 21 | 12 | adantrr 479 |
. . 3
|
| 22 | 1 | xmeterval 15103 |
. . . . . 6
|
| 23 | 22 | biimpa 296 |
. . . . 5
|
| 24 | 23 | adantrl 478 |
. . . 4
|
| 25 | 24 | simp2d 1034 |
. . 3
|
| 26 | simpl 109 |
. . . 4
| |
| 27 | 16 | adantrr 479 |
. . . . 5
|
| 28 | 24 | simp3d 1035 |
. . . . 5
|
| 29 | rexadd 10044 |
. . . . . 6
| |
| 30 | readdcl 8121 |
. . . . . 6
| |
| 31 | 29, 30 | eqeltrd 2306 |
. . . . 5
|
| 32 | 27, 28, 31 | syl2anc 411 |
. . . 4
|
| 33 | 11 | adantrr 479 |
. . . . 5
|
| 34 | xmettri 15040 |
. . . . 5
| |
| 35 | 26, 21, 25, 33, 34 | syl13anc 1273 |
. . . 4
|
| 36 | xmetlecl 15035 |
. . . 4
| |
| 37 | 26, 21, 25, 32, 35, 36 | syl122anc 1280 |
. . 3
|
| 38 | 1 | xmeterval 15103 |
. . . 4
|
| 39 | 38 | adantr 276 |
. . 3
|
| 40 | 21, 25, 37, 39 | mpbir3and 1204 |
. 2
|
| 41 | xmet0 15031 |
. . . . . . 7
| |
| 42 | 0re 8142 |
. . . . . . 7
| |
| 43 | 41, 42 | eqeltrdi 2320 |
. . . . . 6
|
| 44 | 43 | ex 115 |
. . . . 5
|
| 45 | 44 | pm4.71rd 394 |
. . . 4
|
| 46 | df-3an 1004 |
. . . . 5
| |
| 47 | anidm 396 |
. . . . . 6
| |
| 48 | 47 | anbi2ci 459 |
. . . . 5
|
| 49 | 46, 48 | bitri 184 |
. . . 4
|
| 50 | 45, 49 | bitr4di 198 |
. . 3
|
| 51 | 1 | xmeterval 15103 |
. . 3
|
| 52 | 50, 51 | bitr4d 191 |
. 2
|
| 53 | 8, 20, 40, 52 | iserd 6704 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-po 4386 df-iso 4387 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-er 6678 df-map 6795 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-2 9165 df-xadd 9965 df-xmet 14502 |
| This theorem is referenced by: blpnfctr 15107 xmetresbl 15108 |
| Copyright terms: Public domain | W3C validator |