| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > xmeter | Unicode version | ||
| Description: The "finitely separated" relation is an equivalence relation. (Contributed by Mario Carneiro, 24-Aug-2015.) | 
| Ref | Expression | 
|---|---|
| xmeter.1 | 
 | 
| Ref | Expression | 
|---|---|
| xmeter | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | xmeter.1 | 
. . . . 5
 | |
| 2 | cnvimass 5032 | 
. . . . 5
 | |
| 3 | 1, 2 | eqsstri 3215 | 
. . . 4
 | 
| 4 | xmetf 14586 | 
. . . 4
 | |
| 5 | 3, 4 | fssdm 5422 | 
. . 3
 | 
| 6 | relxp 4772 | 
. . 3
 | |
| 7 | relss 4750 | 
. . 3
 | |
| 8 | 5, 6, 7 | mpisyl 1457 | 
. 2
 | 
| 9 | 1 | xmeterval 14671 | 
. . . . 5
 | 
| 10 | 9 | biimpa 296 | 
. . . 4
 | 
| 11 | 10 | simp2d 1012 | 
. . 3
 | 
| 12 | 10 | simp1d 1011 | 
. . 3
 | 
| 13 | simpl 109 | 
. . . . 5
 | |
| 14 | xmetsym 14604 | 
. . . . 5
 | |
| 15 | 13, 12, 11, 14 | syl3anc 1249 | 
. . . 4
 | 
| 16 | 10 | simp3d 1013 | 
. . . 4
 | 
| 17 | 15, 16 | eqeltrrd 2274 | 
. . 3
 | 
| 18 | 1 | xmeterval 14671 | 
. . . 4
 | 
| 19 | 18 | adantr 276 | 
. . 3
 | 
| 20 | 11, 12, 17, 19 | mpbir3and 1182 | 
. 2
 | 
| 21 | 12 | adantrr 479 | 
. . 3
 | 
| 22 | 1 | xmeterval 14671 | 
. . . . . 6
 | 
| 23 | 22 | biimpa 296 | 
. . . . 5
 | 
| 24 | 23 | adantrl 478 | 
. . . 4
 | 
| 25 | 24 | simp2d 1012 | 
. . 3
 | 
| 26 | simpl 109 | 
. . . 4
 | |
| 27 | 16 | adantrr 479 | 
. . . . 5
 | 
| 28 | 24 | simp3d 1013 | 
. . . . 5
 | 
| 29 | rexadd 9927 | 
. . . . . 6
 | |
| 30 | readdcl 8005 | 
. . . . . 6
 | |
| 31 | 29, 30 | eqeltrd 2273 | 
. . . . 5
 | 
| 32 | 27, 28, 31 | syl2anc 411 | 
. . . 4
 | 
| 33 | 11 | adantrr 479 | 
. . . . 5
 | 
| 34 | xmettri 14608 | 
. . . . 5
 | |
| 35 | 26, 21, 25, 33, 34 | syl13anc 1251 | 
. . . 4
 | 
| 36 | xmetlecl 14603 | 
. . . 4
 | |
| 37 | 26, 21, 25, 32, 35, 36 | syl122anc 1258 | 
. . 3
 | 
| 38 | 1 | xmeterval 14671 | 
. . . 4
 | 
| 39 | 38 | adantr 276 | 
. . 3
 | 
| 40 | 21, 25, 37, 39 | mpbir3and 1182 | 
. 2
 | 
| 41 | xmet0 14599 | 
. . . . . . 7
 | |
| 42 | 0re 8026 | 
. . . . . . 7
 | |
| 43 | 41, 42 | eqeltrdi 2287 | 
. . . . . 6
 | 
| 44 | 43 | ex 115 | 
. . . . 5
 | 
| 45 | 44 | pm4.71rd 394 | 
. . . 4
 | 
| 46 | df-3an 982 | 
. . . . 5
 | |
| 47 | anidm 396 | 
. . . . . 6
 | |
| 48 | 47 | anbi2ci 459 | 
. . . . 5
 | 
| 49 | 46, 48 | bitri 184 | 
. . . 4
 | 
| 50 | 45, 49 | bitr4di 198 | 
. . 3
 | 
| 51 | 1 | xmeterval 14671 | 
. . 3
 | 
| 52 | 50, 51 | bitr4d 191 | 
. 2
 | 
| 53 | 8, 20, 40, 52 | iserd 6618 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-po 4331 df-iso 4332 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-er 6592 df-map 6709 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-2 9049 df-xadd 9848 df-xmet 14100 | 
| This theorem is referenced by: blpnfctr 14675 xmetresbl 14676 | 
| Copyright terms: Public domain | W3C validator |