Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xmeter | Unicode version |
Description: The "finitely separated" relation is an equivalence relation. (Contributed by Mario Carneiro, 24-Aug-2015.) |
Ref | Expression |
---|---|
xmeter.1 |
Ref | Expression |
---|---|
xmeter |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xmeter.1 | . . . . 5 | |
2 | cnvimass 4967 | . . . . 5 | |
3 | 1, 2 | eqsstri 3174 | . . . 4 |
4 | xmetf 12990 | . . . 4 | |
5 | 3, 4 | fssdm 5352 | . . 3 |
6 | relxp 4713 | . . 3 | |
7 | relss 4691 | . . 3 | |
8 | 5, 6, 7 | mpisyl 1434 | . 2 |
9 | 1 | xmeterval 13075 | . . . . 5 |
10 | 9 | biimpa 294 | . . . 4 |
11 | 10 | simp2d 1000 | . . 3 |
12 | 10 | simp1d 999 | . . 3 |
13 | simpl 108 | . . . . 5 | |
14 | xmetsym 13008 | . . . . 5 | |
15 | 13, 12, 11, 14 | syl3anc 1228 | . . . 4 |
16 | 10 | simp3d 1001 | . . . 4 |
17 | 15, 16 | eqeltrrd 2244 | . . 3 |
18 | 1 | xmeterval 13075 | . . . 4 |
19 | 18 | adantr 274 | . . 3 |
20 | 11, 12, 17, 19 | mpbir3and 1170 | . 2 |
21 | 12 | adantrr 471 | . . 3 |
22 | 1 | xmeterval 13075 | . . . . . 6 |
23 | 22 | biimpa 294 | . . . . 5 |
24 | 23 | adantrl 470 | . . . 4 |
25 | 24 | simp2d 1000 | . . 3 |
26 | simpl 108 | . . . 4 | |
27 | 16 | adantrr 471 | . . . . 5 |
28 | 24 | simp3d 1001 | . . . . 5 |
29 | rexadd 9788 | . . . . . 6 | |
30 | readdcl 7879 | . . . . . 6 | |
31 | 29, 30 | eqeltrd 2243 | . . . . 5 |
32 | 27, 28, 31 | syl2anc 409 | . . . 4 |
33 | 11 | adantrr 471 | . . . . 5 |
34 | xmettri 13012 | . . . . 5 | |
35 | 26, 21, 25, 33, 34 | syl13anc 1230 | . . . 4 |
36 | xmetlecl 13007 | . . . 4 | |
37 | 26, 21, 25, 32, 35, 36 | syl122anc 1237 | . . 3 |
38 | 1 | xmeterval 13075 | . . . 4 |
39 | 38 | adantr 274 | . . 3 |
40 | 21, 25, 37, 39 | mpbir3and 1170 | . 2 |
41 | xmet0 13003 | . . . . . . 7 | |
42 | 0re 7899 | . . . . . . 7 | |
43 | 41, 42 | eqeltrdi 2257 | . . . . . 6 |
44 | 43 | ex 114 | . . . . 5 |
45 | 44 | pm4.71rd 392 | . . . 4 |
46 | df-3an 970 | . . . . 5 | |
47 | anidm 394 | . . . . . 6 | |
48 | 47 | anbi2ci 455 | . . . . 5 |
49 | 46, 48 | bitri 183 | . . . 4 |
50 | 45, 49 | bitr4di 197 | . . 3 |
51 | 1 | xmeterval 13075 | . . 3 |
52 | 50, 51 | bitr4d 190 | . 2 |
53 | 8, 20, 40, 52 | iserd 6527 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 968 wceq 1343 wcel 2136 wss 3116 class class class wbr 3982 cxp 4602 ccnv 4603 cdm 4604 cima 4607 wrel 4609 cfv 5188 (class class class)co 5842 wer 6498 cr 7752 cc0 7753 caddc 7756 cxr 7932 cle 7934 cxad 9706 cxmet 12620 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-po 4274 df-iso 4275 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-er 6501 df-map 6616 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-2 8916 df-xadd 9709 df-xmet 12628 |
This theorem is referenced by: blpnfctr 13079 xmetresbl 13080 |
Copyright terms: Public domain | W3C validator |