| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xmeter | Unicode version | ||
| Description: The "finitely separated" relation is an equivalence relation. (Contributed by Mario Carneiro, 24-Aug-2015.) |
| Ref | Expression |
|---|---|
| xmeter.1 |
|
| Ref | Expression |
|---|---|
| xmeter |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xmeter.1 |
. . . . 5
| |
| 2 | cnvimass 5045 |
. . . . 5
| |
| 3 | 1, 2 | eqsstri 3225 |
. . . 4
|
| 4 | xmetf 14822 |
. . . 4
| |
| 5 | 3, 4 | fssdm 5440 |
. . 3
|
| 6 | relxp 4784 |
. . 3
| |
| 7 | relss 4762 |
. . 3
| |
| 8 | 5, 6, 7 | mpisyl 1466 |
. 2
|
| 9 | 1 | xmeterval 14907 |
. . . . 5
|
| 10 | 9 | biimpa 296 |
. . . 4
|
| 11 | 10 | simp2d 1013 |
. . 3
|
| 12 | 10 | simp1d 1012 |
. . 3
|
| 13 | simpl 109 |
. . . . 5
| |
| 14 | xmetsym 14840 |
. . . . 5
| |
| 15 | 13, 12, 11, 14 | syl3anc 1250 |
. . . 4
|
| 16 | 10 | simp3d 1014 |
. . . 4
|
| 17 | 15, 16 | eqeltrrd 2283 |
. . 3
|
| 18 | 1 | xmeterval 14907 |
. . . 4
|
| 19 | 18 | adantr 276 |
. . 3
|
| 20 | 11, 12, 17, 19 | mpbir3and 1183 |
. 2
|
| 21 | 12 | adantrr 479 |
. . 3
|
| 22 | 1 | xmeterval 14907 |
. . . . . 6
|
| 23 | 22 | biimpa 296 |
. . . . 5
|
| 24 | 23 | adantrl 478 |
. . . 4
|
| 25 | 24 | simp2d 1013 |
. . 3
|
| 26 | simpl 109 |
. . . 4
| |
| 27 | 16 | adantrr 479 |
. . . . 5
|
| 28 | 24 | simp3d 1014 |
. . . . 5
|
| 29 | rexadd 9974 |
. . . . . 6
| |
| 30 | readdcl 8051 |
. . . . . 6
| |
| 31 | 29, 30 | eqeltrd 2282 |
. . . . 5
|
| 32 | 27, 28, 31 | syl2anc 411 |
. . . 4
|
| 33 | 11 | adantrr 479 |
. . . . 5
|
| 34 | xmettri 14844 |
. . . . 5
| |
| 35 | 26, 21, 25, 33, 34 | syl13anc 1252 |
. . . 4
|
| 36 | xmetlecl 14839 |
. . . 4
| |
| 37 | 26, 21, 25, 32, 35, 36 | syl122anc 1259 |
. . 3
|
| 38 | 1 | xmeterval 14907 |
. . . 4
|
| 39 | 38 | adantr 276 |
. . 3
|
| 40 | 21, 25, 37, 39 | mpbir3and 1183 |
. 2
|
| 41 | xmet0 14835 |
. . . . . . 7
| |
| 42 | 0re 8072 |
. . . . . . 7
| |
| 43 | 41, 42 | eqeltrdi 2296 |
. . . . . 6
|
| 44 | 43 | ex 115 |
. . . . 5
|
| 45 | 44 | pm4.71rd 394 |
. . . 4
|
| 46 | df-3an 983 |
. . . . 5
| |
| 47 | anidm 396 |
. . . . . 6
| |
| 48 | 47 | anbi2ci 459 |
. . . . 5
|
| 49 | 46, 48 | bitri 184 |
. . . 4
|
| 50 | 45, 49 | bitr4di 198 |
. . 3
|
| 51 | 1 | xmeterval 14907 |
. . 3
|
| 52 | 50, 51 | bitr4d 191 |
. 2
|
| 53 | 8, 20, 40, 52 | iserd 6646 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-mulrcl 8024 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-precex 8035 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 ax-pre-mulgt0 8042 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-po 4343 df-iso 4344 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-er 6620 df-map 6737 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-2 9095 df-xadd 9895 df-xmet 14306 |
| This theorem is referenced by: blpnfctr 14911 xmetresbl 14912 |
| Copyright terms: Public domain | W3C validator |