ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fssdm GIF version

Theorem fssdm 5487
Description: Expressing that a class is a subclass of the domain of a function expressed in maps-to notation, semi-deduction form. (Contributed by AV, 21-Aug-2022.)
Hypotheses
Ref Expression
fssdm.d 𝐷 ⊆ dom 𝐹
fssdm.f (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
fssdm (𝜑𝐷𝐴)

Proof of Theorem fssdm
StepHypRef Expression
1 fssdm.d . 2 𝐷 ⊆ dom 𝐹
2 fssdm.f . . 3 (𝜑𝐹:𝐴𝐵)
32fdmd 5479 . 2 (𝜑 → dom 𝐹 = 𝐴)
41, 3sseqtrid 3274 1 (𝜑𝐷𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wss 3197  dom cdm 4718  wf 5313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-in 3203  df-ss 3210  df-fn 5320  df-f 5321
This theorem is referenced by:  fisumss  11898  fprodssdc  12096  ghmpreima  13798  cnclima  14891  txcnmpt  14941  xmeter  15104
  Copyright terms: Public domain W3C validator