![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fssdm | GIF version |
Description: Expressing that a class is a subclass of the domain of a function expressed in maps-to notation, semi-deduction form. (Contributed by AV, 21-Aug-2022.) |
Ref | Expression |
---|---|
fssdm.d | ⊢ 𝐷 ⊆ dom 𝐹 |
fssdm.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
Ref | Expression |
---|---|
fssdm | ⊢ (𝜑 → 𝐷 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fssdm.d | . 2 ⊢ 𝐷 ⊆ dom 𝐹 | |
2 | fssdm.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
3 | 2 | fdmd 5384 | . 2 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
4 | 1, 3 | sseqtrid 3217 | 1 ⊢ (𝜑 → 𝐷 ⊆ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ⊆ wss 3141 dom cdm 4638 ⟶wf 5224 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-11 1516 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 |
This theorem depends on definitions: df-bi 117 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-in 3147 df-ss 3154 df-fn 5231 df-f 5232 |
This theorem is referenced by: fisumss 11414 fprodssdc 11612 ghmpreima 13160 cnclima 14076 txcnmpt 14126 xmeter 14289 |
Copyright terms: Public domain | W3C validator |