ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fssdm GIF version

Theorem fssdm 5422
Description: Expressing that a class is a subclass of the domain of a function expressed in maps-to notation, semi-deduction form. (Contributed by AV, 21-Aug-2022.)
Hypotheses
Ref Expression
fssdm.d 𝐷 ⊆ dom 𝐹
fssdm.f (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
fssdm (𝜑𝐷𝐴)

Proof of Theorem fssdm
StepHypRef Expression
1 fssdm.d . 2 𝐷 ⊆ dom 𝐹
2 fssdm.f . . 3 (𝜑𝐹:𝐴𝐵)
32fdmd 5414 . 2 (𝜑 → dom 𝐹 = 𝐴)
41, 3sseqtrid 3233 1 (𝜑𝐷𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wss 3157  dom cdm 4663  wf 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-in 3163  df-ss 3170  df-fn 5261  df-f 5262
This theorem is referenced by:  fisumss  11557  fprodssdc  11755  ghmpreima  13396  cnclima  14459  txcnmpt  14509  xmeter  14672
  Copyright terms: Public domain W3C validator