ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fssdm GIF version

Theorem fssdm 5418
Description: Expressing that a class is a subclass of the domain of a function expressed in maps-to notation, semi-deduction form. (Contributed by AV, 21-Aug-2022.)
Hypotheses
Ref Expression
fssdm.d 𝐷 ⊆ dom 𝐹
fssdm.f (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
fssdm (𝜑𝐷𝐴)

Proof of Theorem fssdm
StepHypRef Expression
1 fssdm.d . 2 𝐷 ⊆ dom 𝐹
2 fssdm.f . . 3 (𝜑𝐹:𝐴𝐵)
32fdmd 5410 . 2 (𝜑 → dom 𝐹 = 𝐴)
41, 3sseqtrid 3229 1 (𝜑𝐷𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wss 3153  dom cdm 4659  wf 5250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-in 3159  df-ss 3166  df-fn 5257  df-f 5258
This theorem is referenced by:  fisumss  11535  fprodssdc  11733  ghmpreima  13336  cnclima  14391  txcnmpt  14441  xmeter  14604
  Copyright terms: Public domain W3C validator