| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > fssdm | GIF version | ||
| Description: Expressing that a class is a subclass of the domain of a function expressed in maps-to notation, semi-deduction form. (Contributed by AV, 21-Aug-2022.) | 
| Ref | Expression | 
|---|---|
| fssdm.d | ⊢ 𝐷 ⊆ dom 𝐹 | 
| fssdm.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | 
| Ref | Expression | 
|---|---|
| fssdm | ⊢ (𝜑 → 𝐷 ⊆ 𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fssdm.d | . 2 ⊢ 𝐷 ⊆ dom 𝐹 | |
| 2 | fssdm.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 3 | 2 | fdmd 5414 | . 2 ⊢ (𝜑 → dom 𝐹 = 𝐴) | 
| 4 | 1, 3 | sseqtrid 3233 | 1 ⊢ (𝜑 → 𝐷 ⊆ 𝐴) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ⊆ wss 3157 dom cdm 4663 ⟶wf 5254 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 df-fn 5261 df-f 5262 | 
| This theorem is referenced by: fisumss 11557 fprodssdc 11755 ghmpreima 13396 cnclima 14459 txcnmpt 14509 xmeter 14672 | 
| Copyright terms: Public domain | W3C validator |