ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifeq12 GIF version

Theorem ifeq12 3536
Description: Equality theorem for conditional operators. (Contributed by NM, 1-Sep-2004.)
Assertion
Ref Expression
ifeq12 ((𝐴 = 𝐵𝐶 = 𝐷) → if(𝜑, 𝐴, 𝐶) = if(𝜑, 𝐵, 𝐷))

Proof of Theorem ifeq12
StepHypRef Expression
1 ifeq1 3523 . 2 (𝐴 = 𝐵 → if(𝜑, 𝐴, 𝐶) = if(𝜑, 𝐵, 𝐶))
2 ifeq2 3524 . 2 (𝐶 = 𝐷 → if(𝜑, 𝐵, 𝐶) = if(𝜑, 𝐵, 𝐷))
31, 2sylan9eq 2219 1 ((𝐴 = 𝐵𝐶 = 𝐷) → if(𝜑, 𝐴, 𝐶) = if(𝜑, 𝐵, 𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  ifcif 3520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rab 2453  df-v 2728  df-un 3120  df-if 3521
This theorem is referenced by:  xaddmnf1  9784
  Copyright terms: Public domain W3C validator