Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ifeq1 | Unicode version |
Description: Equality theorem for conditional operator. (Contributed by NM, 1-Sep-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
ifeq1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeq 2704 | . . 3 | |
2 | 1 | uneq1d 3260 | . 2 |
3 | dfif6 3507 | . 2 | |
4 | dfif6 3507 | . 2 | |
5 | 2, 3, 4 | 3eqtr4g 2215 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wceq 1335 crab 2439 cun 3100 cif 3505 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-rab 2444 df-v 2714 df-un 3106 df-if 3506 |
This theorem is referenced by: ifeq12 3521 ifeq1d 3522 ifbieq12i 3530 cbvsum 11250 prodeq2w 11446 cbvprod 11448 zproddc 11469 |
Copyright terms: Public domain | W3C validator |