ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xaddmnf1 Unicode version

Theorem xaddmnf1 9817
Description: Addition of negative infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddmnf1  |-  ( ( A  e.  RR*  /\  A  =/= +oo )  ->  ( A +e -oo )  = -oo )

Proof of Theorem xaddmnf1
StepHypRef Expression
1 mnfxr 7988 . . . 4  |- -oo  e.  RR*
2 xaddval 9814 . . . 4  |-  ( ( A  e.  RR*  /\ -oo  e.  RR* )  ->  ( A +e -oo )  =  if ( A  = +oo ,  if ( -oo  = -oo , 
0 , +oo ) ,  if ( A  = -oo ,  if ( -oo  = +oo , 
0 , -oo ) ,  if ( -oo  = +oo , +oo ,  if ( -oo  = -oo , -oo ,  ( A  + -oo ) ) ) ) ) )
31, 2mpan2 425 . . 3  |-  ( A  e.  RR*  ->  ( A +e -oo )  =  if ( A  = +oo ,  if ( -oo  = -oo , 
0 , +oo ) ,  if ( A  = -oo ,  if ( -oo  = +oo , 
0 , -oo ) ,  if ( -oo  = +oo , +oo ,  if ( -oo  = -oo , -oo ,  ( A  + -oo ) ) ) ) ) )
43adantr 276 . 2  |-  ( ( A  e.  RR*  /\  A  =/= +oo )  ->  ( A +e -oo )  =  if ( A  = +oo ,  if ( -oo  = -oo , 
0 , +oo ) ,  if ( A  = -oo ,  if ( -oo  = +oo , 
0 , -oo ) ,  if ( -oo  = +oo , +oo ,  if ( -oo  = -oo , -oo ,  ( A  + -oo ) ) ) ) ) )
5 ifnefalse 3543 . . 3  |-  ( A  =/= +oo  ->  if ( A  = +oo ,  if ( -oo  = -oo ,  0 , +oo ) ,  if ( A  = -oo ,  if ( -oo  = +oo , 
0 , -oo ) ,  if ( -oo  = +oo , +oo ,  if ( -oo  = -oo , -oo ,  ( A  + -oo ) ) ) ) )  =  if ( A  = -oo ,  if ( -oo  = +oo ,  0 , -oo ) ,  if ( -oo  = +oo , +oo ,  if ( -oo  = -oo , -oo ,  ( A  + -oo )
) ) ) )
6 mnfnepnf 7987 . . . . . 6  |- -oo  =/= +oo
7 ifnefalse 3543 . . . . . 6  |-  ( -oo  =/= +oo  ->  if ( -oo  = +oo ,  0 , -oo )  = -oo )
86, 7ax-mp 5 . . . . 5  |-  if ( -oo  = +oo , 
0 , -oo )  = -oo
9 ifnefalse 3543 . . . . . . 7  |-  ( -oo  =/= +oo  ->  if ( -oo  = +oo , +oo ,  if ( -oo  = -oo , -oo ,  ( A  + -oo )
) )  =  if ( -oo  = -oo , -oo ,  ( A  + -oo ) ) )
106, 9ax-mp 5 . . . . . 6  |-  if ( -oo  = +oo , +oo ,  if ( -oo  = -oo , -oo , 
( A  + -oo ) ) )  =  if ( -oo  = -oo , -oo ,  ( A  + -oo )
)
11 eqid 2175 . . . . . . 7  |- -oo  = -oo
1211iftruei 3538 . . . . . 6  |-  if ( -oo  = -oo , -oo ,  ( A  + -oo ) )  = -oo
1310, 12eqtri 2196 . . . . 5  |-  if ( -oo  = +oo , +oo ,  if ( -oo  = -oo , -oo , 
( A  + -oo ) ) )  = -oo
14 ifeq12 3548 . . . . 5  |-  ( ( if ( -oo  = +oo ,  0 , -oo )  = -oo  /\  if ( -oo  = +oo , +oo ,  if ( -oo  = -oo , -oo , 
( A  + -oo ) ) )  = -oo )  ->  if ( A  = -oo ,  if ( -oo  = +oo ,  0 , -oo ) ,  if ( -oo  = +oo , +oo ,  if ( -oo  = -oo , -oo ,  ( A  + -oo )
) ) )  =  if ( A  = -oo , -oo , -oo ) )
158, 13, 14mp2an 426 . . . 4  |-  if ( A  = -oo ,  if ( -oo  = +oo ,  0 , -oo ) ,  if ( -oo  = +oo , +oo ,  if ( -oo  = -oo , -oo ,  ( A  + -oo )
) ) )  =  if ( A  = -oo , -oo , -oo )
16 xrmnfdc 9812 . . . . 5  |-  ( A  e.  RR*  -> DECID  A  = -oo )
17 ifiddc 3565 . . . . 5  |-  (DECID  A  = -oo  ->  if ( A  = -oo , -oo , -oo )  = -oo )
1816, 17syl 14 . . . 4  |-  ( A  e.  RR*  ->  if ( A  = -oo , -oo , -oo )  = -oo )
1915, 18eqtrid 2220 . . 3  |-  ( A  e.  RR*  ->  if ( A  = -oo ,  if ( -oo  = +oo ,  0 , -oo ) ,  if ( -oo  = +oo , +oo ,  if ( -oo  = -oo , -oo ,  ( A  + -oo )
) ) )  = -oo )
205, 19sylan9eqr 2230 . 2  |-  ( ( A  e.  RR*  /\  A  =/= +oo )  ->  if ( A  = +oo ,  if ( -oo  = -oo ,  0 , +oo ) ,  if ( A  = -oo ,  if ( -oo  = +oo , 
0 , -oo ) ,  if ( -oo  = +oo , +oo ,  if ( -oo  = -oo , -oo ,  ( A  + -oo ) ) ) ) )  = -oo )
214, 20eqtrd 2208 1  |-  ( ( A  e.  RR*  /\  A  =/= +oo )  ->  ( A +e -oo )  = -oo )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104  DECID wdc 834    = wceq 1353    e. wcel 2146    =/= wne 2345   ifcif 3532  (class class class)co 5865   0cc0 7786    + caddc 7789   +oocpnf 7963   -oocmnf 7964   RR*cxr 7965   +ecxad 9739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-1re 7880  ax-addrcl 7883  ax-rnegex 7895
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-rab 2462  df-v 2737  df-sbc 2961  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-if 3533  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-iota 5170  df-fun 5210  df-fv 5216  df-ov 5868  df-oprab 5869  df-mpo 5870  df-pnf 7968  df-mnf 7969  df-xr 7970  df-xadd 9742
This theorem is referenced by:  xaddnepnf  9827  xaddcom  9830  xnegdi  9837  xleadd1a  9842  xsubge0  9850  xposdif  9851  xlesubadd  9852  xleaddadd  9856  xblss2ps  13473  xblss2  13474
  Copyright terms: Public domain W3C validator