ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xaddmnf1 Unicode version

Theorem xaddmnf1 9784
Description: Addition of negative infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddmnf1  |-  ( ( A  e.  RR*  /\  A  =/= +oo )  ->  ( A +e -oo )  = -oo )

Proof of Theorem xaddmnf1
StepHypRef Expression
1 mnfxr 7955 . . . 4  |- -oo  e.  RR*
2 xaddval 9781 . . . 4  |-  ( ( A  e.  RR*  /\ -oo  e.  RR* )  ->  ( A +e -oo )  =  if ( A  = +oo ,  if ( -oo  = -oo , 
0 , +oo ) ,  if ( A  = -oo ,  if ( -oo  = +oo , 
0 , -oo ) ,  if ( -oo  = +oo , +oo ,  if ( -oo  = -oo , -oo ,  ( A  + -oo ) ) ) ) ) )
31, 2mpan2 422 . . 3  |-  ( A  e.  RR*  ->  ( A +e -oo )  =  if ( A  = +oo ,  if ( -oo  = -oo , 
0 , +oo ) ,  if ( A  = -oo ,  if ( -oo  = +oo , 
0 , -oo ) ,  if ( -oo  = +oo , +oo ,  if ( -oo  = -oo , -oo ,  ( A  + -oo ) ) ) ) ) )
43adantr 274 . 2  |-  ( ( A  e.  RR*  /\  A  =/= +oo )  ->  ( A +e -oo )  =  if ( A  = +oo ,  if ( -oo  = -oo , 
0 , +oo ) ,  if ( A  = -oo ,  if ( -oo  = +oo , 
0 , -oo ) ,  if ( -oo  = +oo , +oo ,  if ( -oo  = -oo , -oo ,  ( A  + -oo ) ) ) ) ) )
5 ifnefalse 3531 . . 3  |-  ( A  =/= +oo  ->  if ( A  = +oo ,  if ( -oo  = -oo ,  0 , +oo ) ,  if ( A  = -oo ,  if ( -oo  = +oo , 
0 , -oo ) ,  if ( -oo  = +oo , +oo ,  if ( -oo  = -oo , -oo ,  ( A  + -oo ) ) ) ) )  =  if ( A  = -oo ,  if ( -oo  = +oo ,  0 , -oo ) ,  if ( -oo  = +oo , +oo ,  if ( -oo  = -oo , -oo ,  ( A  + -oo )
) ) ) )
6 mnfnepnf 7954 . . . . . 6  |- -oo  =/= +oo
7 ifnefalse 3531 . . . . . 6  |-  ( -oo  =/= +oo  ->  if ( -oo  = +oo ,  0 , -oo )  = -oo )
86, 7ax-mp 5 . . . . 5  |-  if ( -oo  = +oo , 
0 , -oo )  = -oo
9 ifnefalse 3531 . . . . . . 7  |-  ( -oo  =/= +oo  ->  if ( -oo  = +oo , +oo ,  if ( -oo  = -oo , -oo ,  ( A  + -oo )
) )  =  if ( -oo  = -oo , -oo ,  ( A  + -oo ) ) )
106, 9ax-mp 5 . . . . . 6  |-  if ( -oo  = +oo , +oo ,  if ( -oo  = -oo , -oo , 
( A  + -oo ) ) )  =  if ( -oo  = -oo , -oo ,  ( A  + -oo )
)
11 eqid 2165 . . . . . . 7  |- -oo  = -oo
1211iftruei 3526 . . . . . 6  |-  if ( -oo  = -oo , -oo ,  ( A  + -oo ) )  = -oo
1310, 12eqtri 2186 . . . . 5  |-  if ( -oo  = +oo , +oo ,  if ( -oo  = -oo , -oo , 
( A  + -oo ) ) )  = -oo
14 ifeq12 3536 . . . . 5  |-  ( ( if ( -oo  = +oo ,  0 , -oo )  = -oo  /\  if ( -oo  = +oo , +oo ,  if ( -oo  = -oo , -oo , 
( A  + -oo ) ) )  = -oo )  ->  if ( A  = -oo ,  if ( -oo  = +oo ,  0 , -oo ) ,  if ( -oo  = +oo , +oo ,  if ( -oo  = -oo , -oo ,  ( A  + -oo )
) ) )  =  if ( A  = -oo , -oo , -oo ) )
158, 13, 14mp2an 423 . . . 4  |-  if ( A  = -oo ,  if ( -oo  = +oo ,  0 , -oo ) ,  if ( -oo  = +oo , +oo ,  if ( -oo  = -oo , -oo ,  ( A  + -oo )
) ) )  =  if ( A  = -oo , -oo , -oo )
16 xrmnfdc 9779 . . . . 5  |-  ( A  e.  RR*  -> DECID  A  = -oo )
17 ifiddc 3553 . . . . 5  |-  (DECID  A  = -oo  ->  if ( A  = -oo , -oo , -oo )  = -oo )
1816, 17syl 14 . . . 4  |-  ( A  e.  RR*  ->  if ( A  = -oo , -oo , -oo )  = -oo )
1915, 18syl5eq 2211 . . 3  |-  ( A  e.  RR*  ->  if ( A  = -oo ,  if ( -oo  = +oo ,  0 , -oo ) ,  if ( -oo  = +oo , +oo ,  if ( -oo  = -oo , -oo ,  ( A  + -oo )
) ) )  = -oo )
205, 19sylan9eqr 2221 . 2  |-  ( ( A  e.  RR*  /\  A  =/= +oo )  ->  if ( A  = +oo ,  if ( -oo  = -oo ,  0 , +oo ) ,  if ( A  = -oo ,  if ( -oo  = +oo , 
0 , -oo ) ,  if ( -oo  = +oo , +oo ,  if ( -oo  = -oo , -oo ,  ( A  + -oo ) ) ) ) )  = -oo )
214, 20eqtrd 2198 1  |-  ( ( A  e.  RR*  /\  A  =/= +oo )  ->  ( A +e -oo )  = -oo )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103  DECID wdc 824    = wceq 1343    e. wcel 2136    =/= wne 2336   ifcif 3520  (class class class)co 5842   0cc0 7753    + caddc 7756   +oocpnf 7930   -oocmnf 7931   RR*cxr 7932   +ecxad 9706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1re 7847  ax-addrcl 7850  ax-rnegex 7862
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-xadd 9709
This theorem is referenced by:  xaddnepnf  9794  xaddcom  9797  xnegdi  9804  xleadd1a  9809  xsubge0  9817  xposdif  9818  xlesubadd  9819  xleaddadd  9823  xblss2ps  13044  xblss2  13045
  Copyright terms: Public domain W3C validator