Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xaddmnf1 | Unicode version |
Description: Addition of negative infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xaddmnf1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnfxr 7988 | . . . 4 | |
2 | xaddval 9814 | . . . 4 | |
3 | 1, 2 | mpan2 425 | . . 3 |
4 | 3 | adantr 276 | . 2 |
5 | ifnefalse 3543 | . . 3 | |
6 | mnfnepnf 7987 | . . . . . 6 | |
7 | ifnefalse 3543 | . . . . . 6 | |
8 | 6, 7 | ax-mp 5 | . . . . 5 |
9 | ifnefalse 3543 | . . . . . . 7 | |
10 | 6, 9 | ax-mp 5 | . . . . . 6 |
11 | eqid 2175 | . . . . . . 7 | |
12 | 11 | iftruei 3538 | . . . . . 6 |
13 | 10, 12 | eqtri 2196 | . . . . 5 |
14 | ifeq12 3548 | . . . . 5 | |
15 | 8, 13, 14 | mp2an 426 | . . . 4 |
16 | xrmnfdc 9812 | . . . . 5 DECID | |
17 | ifiddc 3565 | . . . . 5 DECID | |
18 | 16, 17 | syl 14 | . . . 4 |
19 | 15, 18 | eqtrid 2220 | . . 3 |
20 | 5, 19 | sylan9eqr 2230 | . 2 |
21 | 4, 20 | eqtrd 2208 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 DECID wdc 834 wceq 1353 wcel 2146 wne 2345 cif 3532 (class class class)co 5865 cc0 7786 caddc 7789 cpnf 7963 cmnf 7964 cxr 7965 cxad 9739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1re 7880 ax-addrcl 7883 ax-rnegex 7895 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-if 3533 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-iota 5170 df-fun 5210 df-fv 5216 df-ov 5868 df-oprab 5869 df-mpo 5870 df-pnf 7968 df-mnf 7969 df-xr 7970 df-xadd 9742 |
This theorem is referenced by: xaddnepnf 9827 xaddcom 9830 xnegdi 9837 xleadd1a 9842 xsubge0 9850 xposdif 9851 xlesubadd 9852 xleaddadd 9856 xblss2ps 13473 xblss2 13474 |
Copyright terms: Public domain | W3C validator |