ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifeq1d Unicode version

Theorem ifeq1d 3588
Description: Equality deduction for conditional operator. (Contributed by NM, 16-Feb-2005.)
Hypothesis
Ref Expression
ifeq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
ifeq1d  |-  ( ph  ->  if ( ps ,  A ,  C )  =  if ( ps ,  B ,  C )
)

Proof of Theorem ifeq1d
StepHypRef Expression
1 ifeq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 ifeq1 3574 . 2  |-  ( A  =  B  ->  if ( ps ,  A ,  C )  =  if ( ps ,  B ,  C ) )
31, 2syl 14 1  |-  ( ph  ->  if ( ps ,  A ,  C )  =  if ( ps ,  B ,  C )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373   ifcif 3571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rab 2493  df-v 2774  df-un 3170  df-if 3572
This theorem is referenced by:  ifeq12d  3590  ifbieq1d  3593  ifeq1dadc  3601  iseqf1olemjpcl  10655  iseqf1olemqpcl  10656  iseqf1olemfvp  10657  seq3f1olemqsum  10660  seq3f1olemp  10662  summodc  11727  fsum3  11731  fsum3ser  11741  isumlessdc  11840  prodeq2w  11900  prodmodc  11922  fprodseq  11927  prodssdc  11933  subgmulg  13557  lgsval  15514
  Copyright terms: Public domain W3C validator