| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifeq1d | Unicode version | ||
| Description: Equality deduction for conditional operator. (Contributed by NM, 16-Feb-2005.) |
| Ref | Expression |
|---|---|
| ifeq1d.1 |
|
| Ref | Expression |
|---|---|
| ifeq1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifeq1d.1 |
. 2
| |
| 2 | ifeq1 3582 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rab 2495 df-v 2778 df-un 3178 df-if 3580 |
| This theorem is referenced by: ifeq12d 3599 ifbieq1d 3602 ifeq1dadc 3610 iseqf1olemjpcl 10690 iseqf1olemqpcl 10691 iseqf1olemfvp 10692 seq3f1olemqsum 10695 seq3f1olemp 10697 summodc 11809 fsum3 11813 fsum3ser 11823 isumlessdc 11922 prodeq2w 11982 prodmodc 12004 fprodseq 12009 prodssdc 12015 subgmulg 13639 lgsval 15596 |
| Copyright terms: Public domain | W3C validator |