| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifeq1d | Unicode version | ||
| Description: Equality deduction for conditional operator. (Contributed by NM, 16-Feb-2005.) |
| Ref | Expression |
|---|---|
| ifeq1d.1 |
|
| Ref | Expression |
|---|---|
| ifeq1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifeq1d.1 |
. 2
| |
| 2 | ifeq1 3565 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-v 2765 df-un 3161 df-if 3563 |
| This theorem is referenced by: ifeq12d 3581 ifbieq1d 3584 ifeq1dadc 3592 iseqf1olemjpcl 10617 iseqf1olemqpcl 10618 iseqf1olemfvp 10619 seq3f1olemqsum 10622 seq3f1olemp 10624 summodc 11565 fsum3 11569 fsum3ser 11579 isumlessdc 11678 prodeq2w 11738 prodmodc 11760 fprodseq 11765 prodssdc 11771 subgmulg 13394 lgsval 15329 |
| Copyright terms: Public domain | W3C validator |