ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifeq1d Unicode version

Theorem ifeq1d 3553
Description: Equality deduction for conditional operator. (Contributed by NM, 16-Feb-2005.)
Hypothesis
Ref Expression
ifeq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
ifeq1d  |-  ( ph  ->  if ( ps ,  A ,  C )  =  if ( ps ,  B ,  C )
)

Proof of Theorem ifeq1d
StepHypRef Expression
1 ifeq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 ifeq1 3539 . 2  |-  ( A  =  B  ->  if ( ps ,  A ,  C )  =  if ( ps ,  B ,  C ) )
31, 2syl 14 1  |-  ( ph  ->  if ( ps ,  A ,  C )  =  if ( ps ,  B ,  C )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353   ifcif 3536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rab 2464  df-v 2741  df-un 3135  df-if 3537
This theorem is referenced by:  ifeq12d  3555  ifbieq1d  3558  ifeq1dadc  3566  iseqf1olemjpcl  10497  iseqf1olemqpcl  10498  iseqf1olemfvp  10499  seq3f1olemqsum  10502  seq3f1olemp  10504  summodc  11393  fsum3  11397  fsum3ser  11407  isumlessdc  11506  prodeq2w  11566  prodmodc  11588  fprodseq  11593  prodssdc  11599  subgmulg  13053  lgsval  14490
  Copyright terms: Public domain W3C validator