ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifeq1d Unicode version

Theorem ifeq1d 3578
Description: Equality deduction for conditional operator. (Contributed by NM, 16-Feb-2005.)
Hypothesis
Ref Expression
ifeq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
ifeq1d  |-  ( ph  ->  if ( ps ,  A ,  C )  =  if ( ps ,  B ,  C )
)

Proof of Theorem ifeq1d
StepHypRef Expression
1 ifeq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 ifeq1 3564 . 2  |-  ( A  =  B  ->  if ( ps ,  A ,  C )  =  if ( ps ,  B ,  C ) )
31, 2syl 14 1  |-  ( ph  ->  if ( ps ,  A ,  C )  =  if ( ps ,  B ,  C )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   ifcif 3561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rab 2484  df-v 2765  df-un 3161  df-if 3562
This theorem is referenced by:  ifeq12d  3580  ifbieq1d  3583  ifeq1dadc  3591  iseqf1olemjpcl  10600  iseqf1olemqpcl  10601  iseqf1olemfvp  10602  seq3f1olemqsum  10605  seq3f1olemp  10607  summodc  11548  fsum3  11552  fsum3ser  11562  isumlessdc  11661  prodeq2w  11721  prodmodc  11743  fprodseq  11748  prodssdc  11754  subgmulg  13318  lgsval  15245
  Copyright terms: Public domain W3C validator