| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifeq1d | Unicode version | ||
| Description: Equality deduction for conditional operator. (Contributed by NM, 16-Feb-2005.) |
| Ref | Expression |
|---|---|
| ifeq1d.1 |
|
| Ref | Expression |
|---|---|
| ifeq1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifeq1d.1 |
. 2
| |
| 2 | ifeq1 3574 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rab 2493 df-v 2774 df-un 3170 df-if 3572 |
| This theorem is referenced by: ifeq12d 3590 ifbieq1d 3593 ifeq1dadc 3601 iseqf1olemjpcl 10655 iseqf1olemqpcl 10656 iseqf1olemfvp 10657 seq3f1olemqsum 10660 seq3f1olemp 10662 summodc 11727 fsum3 11731 fsum3ser 11741 isumlessdc 11840 prodeq2w 11900 prodmodc 11922 fprodseq 11927 prodssdc 11933 subgmulg 13557 lgsval 15514 |
| Copyright terms: Public domain | W3C validator |