| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifeq1d | Unicode version | ||
| Description: Equality deduction for conditional operator. (Contributed by NM, 16-Feb-2005.) |
| Ref | Expression |
|---|---|
| ifeq1d.1 |
|
| Ref | Expression |
|---|---|
| ifeq1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifeq1d.1 |
. 2
| |
| 2 | ifeq1 3564 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-v 2765 df-un 3161 df-if 3562 |
| This theorem is referenced by: ifeq12d 3580 ifbieq1d 3583 ifeq1dadc 3591 iseqf1olemjpcl 10600 iseqf1olemqpcl 10601 iseqf1olemfvp 10602 seq3f1olemqsum 10605 seq3f1olemp 10607 summodc 11548 fsum3 11552 fsum3ser 11562 isumlessdc 11661 prodeq2w 11721 prodmodc 11743 fprodseq 11748 prodssdc 11754 subgmulg 13318 lgsval 15245 |
| Copyright terms: Public domain | W3C validator |