ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifeq2 Unicode version

Theorem ifeq2 3524
Description: Equality theorem for conditional operator. (Contributed by NM, 1-Sep-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
ifeq2  |-  ( A  =  B  ->  if ( ph ,  C ,  A )  =  if ( ph ,  C ,  B ) )

Proof of Theorem ifeq2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 rabeq 2718 . . 3  |-  ( A  =  B  ->  { x  e.  A  |  -.  ph }  =  { x  e.  B  |  -.  ph } )
21uneq2d 3276 . 2  |-  ( A  =  B  ->  ( { x  e.  C  |  ph }  u.  {
x  e.  A  |  -.  ph } )  =  ( { x  e.  C  |  ph }  u.  { x  e.  B  |  -.  ph } ) )
3 dfif6 3522 . 2  |-  if (
ph ,  C ,  A )  =  ( { x  e.  C  |  ph }  u.  {
x  e.  A  |  -.  ph } )
4 dfif6 3522 . 2  |-  if (
ph ,  C ,  B )  =  ( { x  e.  C  |  ph }  u.  {
x  e.  B  |  -.  ph } )
52, 3, 43eqtr4g 2224 1  |-  ( A  =  B  ->  if ( ph ,  C ,  A )  =  if ( ph ,  C ,  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1343   {crab 2448    u. cun 3114   ifcif 3520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rab 2453  df-v 2728  df-un 3120  df-if 3521
This theorem is referenced by:  ifeq12  3536  ifeq2d  3538  ifbieq2i  3543  xrmaxiflemcom  11190
  Copyright terms: Public domain W3C validator