ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifeq2 Unicode version

Theorem ifeq2 3383
Description: Equality theorem for conditional operator. (Contributed by NM, 1-Sep-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
ifeq2  |-  ( A  =  B  ->  if ( ph ,  C ,  A )  =  if ( ph ,  C ,  B ) )

Proof of Theorem ifeq2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 rabeq 2607 . . 3  |-  ( A  =  B  ->  { x  e.  A  |  -.  ph }  =  { x  e.  B  |  -.  ph } )
21uneq2d 3143 . 2  |-  ( A  =  B  ->  ( { x  e.  C  |  ph }  u.  {
x  e.  A  |  -.  ph } )  =  ( { x  e.  C  |  ph }  u.  { x  e.  B  |  -.  ph } ) )
3 dfif6 3381 . 2  |-  if (
ph ,  C ,  A )  =  ( { x  e.  C  |  ph }  u.  {
x  e.  A  |  -.  ph } )
4 dfif6 3381 . 2  |-  if (
ph ,  C ,  B )  =  ( { x  e.  C  |  ph }  u.  {
x  e.  B  |  -.  ph } )
52, 3, 43eqtr4g 2142 1  |-  ( A  =  B  ->  if ( ph ,  C ,  A )  =  if ( ph ,  C ,  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1287   {crab 2359    u. cun 2986   ifcif 3379
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067
This theorem depends on definitions:  df-bi 115  df-tru 1290  df-nf 1393  df-sb 1690  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-rab 2364  df-v 2617  df-un 2992  df-if 3380
This theorem is referenced by:  ifeq12  3393  ifeq2d  3395  ifbieq2i  3400
  Copyright terms: Public domain W3C validator