ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifeq2 Unicode version

Theorem ifeq2 3606
Description: Equality theorem for conditional operator. (Contributed by NM, 1-Sep-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
ifeq2  |-  ( A  =  B  ->  if ( ph ,  C ,  A )  =  if ( ph ,  C ,  B ) )

Proof of Theorem ifeq2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 rabeq 2791 . . 3  |-  ( A  =  B  ->  { x  e.  A  |  -.  ph }  =  { x  e.  B  |  -.  ph } )
21uneq2d 3358 . 2  |-  ( A  =  B  ->  ( { x  e.  C  |  ph }  u.  {
x  e.  A  |  -.  ph } )  =  ( { x  e.  C  |  ph }  u.  { x  e.  B  |  -.  ph } ) )
3 dfif6 3604 . 2  |-  if (
ph ,  C ,  A )  =  ( { x  e.  C  |  ph }  u.  {
x  e.  A  |  -.  ph } )
4 dfif6 3604 . 2  |-  if (
ph ,  C ,  B )  =  ( { x  e.  C  |  ph }  u.  {
x  e.  B  |  -.  ph } )
52, 3, 43eqtr4g 2287 1  |-  ( A  =  B  ->  if ( ph ,  C ,  A )  =  if ( ph ,  C ,  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1395   {crab 2512    u. cun 3195   ifcif 3602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rab 2517  df-v 2801  df-un 3201  df-if 3603
This theorem is referenced by:  ifeq12  3619  ifeq2d  3621  ifbieq2i  3626  xrmaxiflemcom  11760
  Copyright terms: Public domain W3C validator