ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifnetruedc GIF version

Theorem ifnetruedc 3646
Description: Deduce truth from a conditional operator value. (Contributed by Thierry Arnoux, 20-Feb-2025.)
Assertion
Ref Expression
ifnetruedc ((DECID 𝜑𝐴𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴) → 𝜑)

Proof of Theorem ifnetruedc
StepHypRef Expression
1 simp1 1021 . 2 ((DECID 𝜑𝐴𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴) → DECID 𝜑)
2 iffalse 3610 . . . 4 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵)
32adantl 277 . . 3 (((DECID 𝜑𝐴𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴) ∧ ¬ 𝜑) → if(𝜑, 𝐴, 𝐵) = 𝐵)
4 simpl3 1026 . . . . 5 (((DECID 𝜑𝐴𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴) ∧ ¬ 𝜑) → if(𝜑, 𝐴, 𝐵) = 𝐴)
5 simpl2 1025 . . . . 5 (((DECID 𝜑𝐴𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴) ∧ ¬ 𝜑) → 𝐴𝐵)
64, 5eqnetrd 2424 . . . 4 (((DECID 𝜑𝐴𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴) ∧ ¬ 𝜑) → if(𝜑, 𝐴, 𝐵) ≠ 𝐵)
76neneqd 2421 . . 3 (((DECID 𝜑𝐴𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴) ∧ ¬ 𝜑) → ¬ if(𝜑, 𝐴, 𝐵) = 𝐵)
83, 7condandc 886 . 2 (DECID 𝜑 → ((DECID 𝜑𝐴𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴) → 𝜑))
91, 8mpcom 36 1 ((DECID 𝜑𝐴𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴) → 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  DECID wdc 839  w3a 1002   = wceq 1395  wne 2400  ifcif 3602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3an 1004  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-ne 2401  df-if 3603
This theorem is referenced by:  ifnebibdc  3648
  Copyright terms: Public domain W3C validator