| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifnetruedc | GIF version | ||
| Description: Deduce truth from a conditional operator value. (Contributed by Thierry Arnoux, 20-Feb-2025.) |
| Ref | Expression |
|---|---|
| ifnetruedc | ⊢ ((DECID 𝜑 ∧ 𝐴 ≠ 𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1002 | . 2 ⊢ ((DECID 𝜑 ∧ 𝐴 ≠ 𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴) → DECID 𝜑) | |
| 2 | iffalse 3590 | . . . 4 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) | |
| 3 | 2 | adantl 277 | . . 3 ⊢ (((DECID 𝜑 ∧ 𝐴 ≠ 𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴) ∧ ¬ 𝜑) → if(𝜑, 𝐴, 𝐵) = 𝐵) |
| 4 | simpl3 1007 | . . . . 5 ⊢ (((DECID 𝜑 ∧ 𝐴 ≠ 𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴) ∧ ¬ 𝜑) → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
| 5 | simpl2 1006 | . . . . 5 ⊢ (((DECID 𝜑 ∧ 𝐴 ≠ 𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴) ∧ ¬ 𝜑) → 𝐴 ≠ 𝐵) | |
| 6 | 4, 5 | eqnetrd 2404 | . . . 4 ⊢ (((DECID 𝜑 ∧ 𝐴 ≠ 𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴) ∧ ¬ 𝜑) → if(𝜑, 𝐴, 𝐵) ≠ 𝐵) |
| 7 | 6 | neneqd 2401 | . . 3 ⊢ (((DECID 𝜑 ∧ 𝐴 ≠ 𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴) ∧ ¬ 𝜑) → ¬ if(𝜑, 𝐴, 𝐵) = 𝐵) |
| 8 | 3, 7 | condandc 885 | . 2 ⊢ (DECID 𝜑 → ((DECID 𝜑 ∧ 𝐴 ≠ 𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴) → 𝜑)) |
| 9 | 1, 8 | mpcom 36 | 1 ⊢ ((DECID 𝜑 ∧ 𝐴 ≠ 𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴) → 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 DECID wdc 838 ∧ w3a 983 = wceq 1375 ≠ wne 2380 ifcif 3582 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-11 1532 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3an 985 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-ne 2381 df-if 3583 |
| This theorem is referenced by: ifnebibdc 3628 |
| Copyright terms: Public domain | W3C validator |