| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifnetruedc | GIF version | ||
| Description: Deduce truth from a conditional operator value. (Contributed by Thierry Arnoux, 20-Feb-2025.) |
| Ref | Expression |
|---|---|
| ifnetruedc | ⊢ ((DECID 𝜑 ∧ 𝐴 ≠ 𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1000 | . 2 ⊢ ((DECID 𝜑 ∧ 𝐴 ≠ 𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴) → DECID 𝜑) | |
| 2 | iffalse 3580 | . . . 4 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) | |
| 3 | 2 | adantl 277 | . . 3 ⊢ (((DECID 𝜑 ∧ 𝐴 ≠ 𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴) ∧ ¬ 𝜑) → if(𝜑, 𝐴, 𝐵) = 𝐵) |
| 4 | simpl3 1005 | . . . . 5 ⊢ (((DECID 𝜑 ∧ 𝐴 ≠ 𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴) ∧ ¬ 𝜑) → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
| 5 | simpl2 1004 | . . . . 5 ⊢ (((DECID 𝜑 ∧ 𝐴 ≠ 𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴) ∧ ¬ 𝜑) → 𝐴 ≠ 𝐵) | |
| 6 | 4, 5 | eqnetrd 2401 | . . . 4 ⊢ (((DECID 𝜑 ∧ 𝐴 ≠ 𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴) ∧ ¬ 𝜑) → if(𝜑, 𝐴, 𝐵) ≠ 𝐵) |
| 7 | 6 | neneqd 2398 | . . 3 ⊢ (((DECID 𝜑 ∧ 𝐴 ≠ 𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴) ∧ ¬ 𝜑) → ¬ if(𝜑, 𝐴, 𝐵) = 𝐵) |
| 8 | 3, 7 | condandc 883 | . 2 ⊢ (DECID 𝜑 → ((DECID 𝜑 ∧ 𝐴 ≠ 𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴) → 𝜑)) |
| 9 | 1, 8 | mpcom 36 | 1 ⊢ ((DECID 𝜑 ∧ 𝐴 ≠ 𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴) → 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 DECID wdc 836 ∧ w3a 981 = wceq 1373 ≠ wne 2377 ifcif 3572 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3an 983 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-ne 2378 df-if 3573 |
| This theorem is referenced by: ifnebibdc 3616 |
| Copyright terms: Public domain | W3C validator |