ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iuneq2 Unicode version

Theorem iuneq2 3957
Description: Equality theorem for indexed union. (Contributed by NM, 22-Oct-2003.)
Assertion
Ref Expression
iuneq2  |-  ( A. x  e.  A  B  =  C  ->  U_ x  e.  A  B  =  U_ x  e.  A  C
)

Proof of Theorem iuneq2
StepHypRef Expression
1 ss2iun 3956 . . 3  |-  ( A. x  e.  A  B  C_  C  ->  U_ x  e.  A  B  C_  U_ x  e.  A  C )
2 ss2iun 3956 . . 3  |-  ( A. x  e.  A  C  C_  B  ->  U_ x  e.  A  C  C_  U_ x  e.  A  B )
31, 2anim12i 338 . 2  |-  ( ( A. x  e.  A  B  C_  C  /\  A. x  e.  A  C  C_  B )  ->  ( U_ x  e.  A  B  C_  U_ x  e.  A  C  /\  U_ x  e.  A  C  C_ 
U_ x  e.  A  B ) )
4 eqss 3216 . . . 4  |-  ( B  =  C  <->  ( B  C_  C  /\  C  C_  B ) )
54ralbii 2514 . . 3  |-  ( A. x  e.  A  B  =  C  <->  A. x  e.  A  ( B  C_  C  /\  C  C_  B ) )
6 r19.26 2634 . . 3  |-  ( A. x  e.  A  ( B  C_  C  /\  C  C_  B )  <->  ( A. x  e.  A  B  C_  C  /\  A. x  e.  A  C  C_  B
) )
75, 6bitri 184 . 2  |-  ( A. x  e.  A  B  =  C  <->  ( A. x  e.  A  B  C_  C  /\  A. x  e.  A  C  C_  B ) )
8 eqss 3216 . 2  |-  ( U_ x  e.  A  B  =  U_ x  e.  A  C 
<->  ( U_ x  e.  A  B  C_  U_ x  e.  A  C  /\  U_ x  e.  A  C  C_ 
U_ x  e.  A  B ) )
93, 7, 83imtr4i 201 1  |-  ( A. x  e.  A  B  =  C  ->  U_ x  e.  A  B  =  U_ x  e.  A  C
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373   A.wral 2486    C_ wss 3174   U_ciun 3941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-in 3180  df-ss 3187  df-iun 3943
This theorem is referenced by:  iuneq2i  3959  iuneq2dv  3962  dfmptg  5782
  Copyright terms: Public domain W3C validator