Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iuneq2 | Unicode version |
Description: Equality theorem for indexed union. (Contributed by NM, 22-Oct-2003.) |
Ref | Expression |
---|---|
iuneq2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ss2iun 3897 | . . 3 | |
2 | ss2iun 3897 | . . 3 | |
3 | 1, 2 | anim12i 338 | . 2 |
4 | eqss 3168 | . . . 4 | |
5 | 4 | ralbii 2481 | . . 3 |
6 | r19.26 2601 | . . 3 | |
7 | 5, 6 | bitri 184 | . 2 |
8 | eqss 3168 | . 2 | |
9 | 3, 7, 8 | 3imtr4i 201 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wceq 1353 wral 2453 wss 3127 ciun 3882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-in 3133 df-ss 3140 df-iun 3884 |
This theorem is referenced by: iuneq2i 3900 iuneq2dv 3903 dfmptg 5687 |
Copyright terms: Public domain | W3C validator |