ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iuneq2 Unicode version

Theorem iuneq2 3889
Description: Equality theorem for indexed union. (Contributed by NM, 22-Oct-2003.)
Assertion
Ref Expression
iuneq2  |-  ( A. x  e.  A  B  =  C  ->  U_ x  e.  A  B  =  U_ x  e.  A  C
)

Proof of Theorem iuneq2
StepHypRef Expression
1 ss2iun 3888 . . 3  |-  ( A. x  e.  A  B  C_  C  ->  U_ x  e.  A  B  C_  U_ x  e.  A  C )
2 ss2iun 3888 . . 3  |-  ( A. x  e.  A  C  C_  B  ->  U_ x  e.  A  C  C_  U_ x  e.  A  B )
31, 2anim12i 336 . 2  |-  ( ( A. x  e.  A  B  C_  C  /\  A. x  e.  A  C  C_  B )  ->  ( U_ x  e.  A  B  C_  U_ x  e.  A  C  /\  U_ x  e.  A  C  C_ 
U_ x  e.  A  B ) )
4 eqss 3162 . . . 4  |-  ( B  =  C  <->  ( B  C_  C  /\  C  C_  B ) )
54ralbii 2476 . . 3  |-  ( A. x  e.  A  B  =  C  <->  A. x  e.  A  ( B  C_  C  /\  C  C_  B ) )
6 r19.26 2596 . . 3  |-  ( A. x  e.  A  ( B  C_  C  /\  C  C_  B )  <->  ( A. x  e.  A  B  C_  C  /\  A. x  e.  A  C  C_  B
) )
75, 6bitri 183 . 2  |-  ( A. x  e.  A  B  =  C  <->  ( A. x  e.  A  B  C_  C  /\  A. x  e.  A  C  C_  B ) )
8 eqss 3162 . 2  |-  ( U_ x  e.  A  B  =  U_ x  e.  A  C 
<->  ( U_ x  e.  A  B  C_  U_ x  e.  A  C  /\  U_ x  e.  A  C  C_ 
U_ x  e.  A  B ) )
93, 7, 83imtr4i 200 1  |-  ( A. x  e.  A  B  =  C  ->  U_ x  e.  A  B  =  U_ x  e.  A  C
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348   A.wral 2448    C_ wss 3121   U_ciun 3873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-in 3127  df-ss 3134  df-iun 3875
This theorem is referenced by:  iuneq2i  3891  iuneq2dv  3894  dfmptg  5675
  Copyright terms: Public domain W3C validator