ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iuneq2 Unicode version

Theorem iuneq2 3981
Description: Equality theorem for indexed union. (Contributed by NM, 22-Oct-2003.)
Assertion
Ref Expression
iuneq2  |-  ( A. x  e.  A  B  =  C  ->  U_ x  e.  A  B  =  U_ x  e.  A  C
)

Proof of Theorem iuneq2
StepHypRef Expression
1 ss2iun 3980 . . 3  |-  ( A. x  e.  A  B  C_  C  ->  U_ x  e.  A  B  C_  U_ x  e.  A  C )
2 ss2iun 3980 . . 3  |-  ( A. x  e.  A  C  C_  B  ->  U_ x  e.  A  C  C_  U_ x  e.  A  B )
31, 2anim12i 338 . 2  |-  ( ( A. x  e.  A  B  C_  C  /\  A. x  e.  A  C  C_  B )  ->  ( U_ x  e.  A  B  C_  U_ x  e.  A  C  /\  U_ x  e.  A  C  C_ 
U_ x  e.  A  B ) )
4 eqss 3239 . . . 4  |-  ( B  =  C  <->  ( B  C_  C  /\  C  C_  B ) )
54ralbii 2536 . . 3  |-  ( A. x  e.  A  B  =  C  <->  A. x  e.  A  ( B  C_  C  /\  C  C_  B ) )
6 r19.26 2657 . . 3  |-  ( A. x  e.  A  ( B  C_  C  /\  C  C_  B )  <->  ( A. x  e.  A  B  C_  C  /\  A. x  e.  A  C  C_  B
) )
75, 6bitri 184 . 2  |-  ( A. x  e.  A  B  =  C  <->  ( A. x  e.  A  B  C_  C  /\  A. x  e.  A  C  C_  B ) )
8 eqss 3239 . 2  |-  ( U_ x  e.  A  B  =  U_ x  e.  A  C 
<->  ( U_ x  e.  A  B  C_  U_ x  e.  A  C  /\  U_ x  e.  A  C  C_ 
U_ x  e.  A  B ) )
93, 7, 83imtr4i 201 1  |-  ( A. x  e.  A  B  =  C  ->  U_ x  e.  A  B  =  U_ x  e.  A  C
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395   A.wral 2508    C_ wss 3197   U_ciun 3965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-in 3203  df-ss 3210  df-iun 3967
This theorem is referenced by:  iuneq2i  3983  iuneq2dv  3986  dfmptg  5814
  Copyright terms: Public domain W3C validator