ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iinrabm Unicode version

Theorem iinrabm 4004
Description: Indexed intersection of a restricted class builder. (Contributed by Jim Kingdon, 16-Aug-2018.)
Assertion
Ref Expression
iinrabm  |-  ( E. x  x  e.  A  -> 
|^|_ x  e.  A  { y  e.  B  |  ph }  =  {
y  e.  B  |  A. x  e.  A  ph } )
Distinct variable groups:    y, A, x   
x, B
Allowed substitution hints:    ph( x, y)    B( y)

Proof of Theorem iinrabm
StepHypRef Expression
1 r19.28mv 3561 . . 3  |-  ( E. x  x  e.  A  ->  ( A. x  e.  A  ( y  e.  B  /\  ph )  <->  ( y  e.  B  /\  A. x  e.  A  ph ) ) )
21abbidv 2325 . 2  |-  ( E. x  x  e.  A  ->  { y  |  A. x  e.  A  (
y  e.  B  /\  ph ) }  =  {
y  |  ( y  e.  B  /\  A. x  e.  A  ph ) } )
3 df-rab 2495 . . . . 5  |-  { y  e.  B  |  ph }  =  { y  |  ( y  e.  B  /\  ph ) }
43a1i 9 . . . 4  |-  ( x  e.  A  ->  { y  e.  B  |  ph }  =  { y  |  ( y  e.  B  /\  ph ) } )
54iineq2i 3960 . . 3  |-  |^|_ x  e.  A  { y  e.  B  |  ph }  =  |^|_ x  e.  A  { y  |  ( y  e.  B  /\  ph ) }
6 iinab 4003 . . 3  |-  |^|_ x  e.  A  { y  |  ( y  e.  B  /\  ph ) }  =  { y  |  A. x  e.  A  ( y  e.  B  /\  ph ) }
75, 6eqtri 2228 . 2  |-  |^|_ x  e.  A  { y  e.  B  |  ph }  =  { y  |  A. x  e.  A  (
y  e.  B  /\  ph ) }
8 df-rab 2495 . 2  |-  { y  e.  B  |  A. x  e.  A  ph }  =  { y  |  ( y  e.  B  /\  A. x  e.  A  ph ) }
92, 7, 83eqtr4g 2265 1  |-  ( E. x  x  e.  A  -> 
|^|_ x  e.  A  { y  e.  B  |  ph }  =  {
y  e.  B  |  A. x  e.  A  ph } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373   E.wex 1516    e. wcel 2178   {cab 2193   A.wral 2486   {crab 2490   |^|_ciin 3942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rab 2495  df-v 2778  df-iin 3944
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator