ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iinrabm Unicode version

Theorem iinrabm 3979
Description: Indexed intersection of a restricted class builder. (Contributed by Jim Kingdon, 16-Aug-2018.)
Assertion
Ref Expression
iinrabm  |-  ( E. x  x  e.  A  -> 
|^|_ x  e.  A  { y  e.  B  |  ph }  =  {
y  e.  B  |  A. x  e.  A  ph } )
Distinct variable groups:    y, A, x   
x, B
Allowed substitution hints:    ph( x, y)    B( y)

Proof of Theorem iinrabm
StepHypRef Expression
1 r19.28mv 3543 . . 3  |-  ( E. x  x  e.  A  ->  ( A. x  e.  A  ( y  e.  B  /\  ph )  <->  ( y  e.  B  /\  A. x  e.  A  ph ) ) )
21abbidv 2314 . 2  |-  ( E. x  x  e.  A  ->  { y  |  A. x  e.  A  (
y  e.  B  /\  ph ) }  =  {
y  |  ( y  e.  B  /\  A. x  e.  A  ph ) } )
3 df-rab 2484 . . . . 5  |-  { y  e.  B  |  ph }  =  { y  |  ( y  e.  B  /\  ph ) }
43a1i 9 . . . 4  |-  ( x  e.  A  ->  { y  e.  B  |  ph }  =  { y  |  ( y  e.  B  /\  ph ) } )
54iineq2i 3935 . . 3  |-  |^|_ x  e.  A  { y  e.  B  |  ph }  =  |^|_ x  e.  A  { y  |  ( y  e.  B  /\  ph ) }
6 iinab 3978 . . 3  |-  |^|_ x  e.  A  { y  |  ( y  e.  B  /\  ph ) }  =  { y  |  A. x  e.  A  ( y  e.  B  /\  ph ) }
75, 6eqtri 2217 . 2  |-  |^|_ x  e.  A  { y  e.  B  |  ph }  =  { y  |  A. x  e.  A  (
y  e.  B  /\  ph ) }
8 df-rab 2484 . 2  |-  { y  e.  B  |  A. x  e.  A  ph }  =  { y  |  ( y  e.  B  /\  A. x  e.  A  ph ) }
92, 7, 83eqtr4g 2254 1  |-  ( E. x  x  e.  A  -> 
|^|_ x  e.  A  { y  e.  B  |  ph }  =  {
y  e.  B  |  A. x  e.  A  ph } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364   E.wex 1506    e. wcel 2167   {cab 2182   A.wral 2475   {crab 2479   |^|_ciin 3917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rab 2484  df-v 2765  df-iin 3919
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator