| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iinrabm | GIF version | ||
| Description: Indexed intersection of a restricted class builder. (Contributed by Jim Kingdon, 16-Aug-2018.) |
| Ref | Expression |
|---|---|
| iinrabm | ⊢ (∃𝑥 𝑥 ∈ 𝐴 → ∩ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} = {𝑦 ∈ 𝐵 ∣ ∀𝑥 ∈ 𝐴 𝜑}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.28mv 3561 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ 𝜑) ↔ (𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜑))) | |
| 2 | 1 | abbidv 2325 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → {𝑦 ∣ ∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ 𝜑)} = {𝑦 ∣ (𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜑)}) |
| 3 | df-rab 2495 | . . . . 5 ⊢ {𝑦 ∈ 𝐵 ∣ 𝜑} = {𝑦 ∣ (𝑦 ∈ 𝐵 ∧ 𝜑)} | |
| 4 | 3 | a1i 9 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → {𝑦 ∈ 𝐵 ∣ 𝜑} = {𝑦 ∣ (𝑦 ∈ 𝐵 ∧ 𝜑)}) |
| 5 | 4 | iineq2i 3960 | . . 3 ⊢ ∩ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} = ∩ 𝑥 ∈ 𝐴 {𝑦 ∣ (𝑦 ∈ 𝐵 ∧ 𝜑)} |
| 6 | iinab 4003 | . . 3 ⊢ ∩ 𝑥 ∈ 𝐴 {𝑦 ∣ (𝑦 ∈ 𝐵 ∧ 𝜑)} = {𝑦 ∣ ∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ 𝜑)} | |
| 7 | 5, 6 | eqtri 2228 | . 2 ⊢ ∩ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} = {𝑦 ∣ ∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ 𝜑)} |
| 8 | df-rab 2495 | . 2 ⊢ {𝑦 ∈ 𝐵 ∣ ∀𝑥 ∈ 𝐴 𝜑} = {𝑦 ∣ (𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜑)} | |
| 9 | 2, 7, 8 | 3eqtr4g 2265 | 1 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → ∩ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} = {𝑦 ∈ 𝐵 ∣ ∀𝑥 ∈ 𝐴 𝜑}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∃wex 1516 ∈ wcel 2178 {cab 2193 ∀wral 2486 {crab 2490 ∩ ciin 3942 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rab 2495 df-v 2778 df-iin 3944 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |