ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iinss1 Unicode version

Theorem iinss1 3878
Description: Subclass theorem for indexed union. (Contributed by NM, 24-Jan-2012.)
Assertion
Ref Expression
iinss1  |-  ( A 
C_  B  ->  |^|_ x  e.  B  C  C_  |^|_ x  e.  A  C )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    C( x)

Proof of Theorem iinss1
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ssralv 3206 . . 3  |-  ( A 
C_  B  ->  ( A. x  e.  B  y  e.  C  ->  A. x  e.  A  y  e.  C ) )
2 vex 2729 . . . 4  |-  y  e. 
_V
3 eliin 3871 . . . 4  |-  ( y  e.  _V  ->  (
y  e.  |^|_ x  e.  B  C  <->  A. x  e.  B  y  e.  C ) )
42, 3ax-mp 5 . . 3  |-  ( y  e.  |^|_ x  e.  B  C 
<-> 
A. x  e.  B  y  e.  C )
5 eliin 3871 . . . 4  |-  ( y  e.  _V  ->  (
y  e.  |^|_ x  e.  A  C  <->  A. x  e.  A  y  e.  C ) )
62, 5ax-mp 5 . . 3  |-  ( y  e.  |^|_ x  e.  A  C 
<-> 
A. x  e.  A  y  e.  C )
71, 4, 63imtr4g 204 . 2  |-  ( A 
C_  B  ->  (
y  e.  |^|_ x  e.  B  C  ->  y  e.  |^|_ x  e.  A  C ) )
87ssrdv 3148 1  |-  ( A 
C_  B  ->  |^|_ x  e.  B  C  C_  |^|_ x  e.  A  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    e. wcel 2136   A.wral 2444   _Vcvv 2726    C_ wss 3116   |^|_ciin 3867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-in 3122  df-ss 3129  df-iin 3869
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator