![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iinss1 | GIF version |
Description: Subclass theorem for indexed union. (Contributed by NM, 24-Jan-2012.) |
Ref | Expression |
---|---|
iinss1 | ⊢ (𝐴 ⊆ 𝐵 → ∩ 𝑥 ∈ 𝐵 𝐶 ⊆ ∩ 𝑥 ∈ 𝐴 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssralv 3100 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 𝑦 ∈ 𝐶 → ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶)) | |
2 | vex 2636 | . . . 4 ⊢ 𝑦 ∈ V | |
3 | eliin 3757 | . . . 4 ⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝐶)) | |
4 | 2, 3 | ax-mp 7 | . . 3 ⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝐶) |
5 | eliin 3757 | . . . 4 ⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶)) | |
6 | 2, 5 | ax-mp 7 | . . 3 ⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶) |
7 | 1, 4, 6 | 3imtr4g 204 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑦 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 → 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶)) |
8 | 7 | ssrdv 3045 | 1 ⊢ (𝐴 ⊆ 𝐵 → ∩ 𝑥 ∈ 𝐵 𝐶 ⊆ ∩ 𝑥 ∈ 𝐴 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∈ wcel 1445 ∀wral 2370 Vcvv 2633 ⊆ wss 3013 ∩ ciin 3753 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 |
This theorem depends on definitions: df-bi 116 df-tru 1299 df-nf 1402 df-sb 1700 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ral 2375 df-v 2635 df-in 3019 df-ss 3026 df-iin 3755 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |