| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iuneq1 | Unicode version | ||
| Description: Equality theorem for indexed union. (Contributed by NM, 27-Jun-1998.) |
| Ref | Expression |
|---|---|
| iuneq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunss1 3976 |
. . 3
| |
| 2 | iunss1 3976 |
. . 3
| |
| 3 | 1, 2 | anim12i 338 |
. 2
|
| 4 | eqss 3239 |
. 2
| |
| 5 | eqss 3239 |
. 2
| |
| 6 | 3, 4, 5 | 3imtr4i 201 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-in 3203 df-ss 3210 df-iun 3967 |
| This theorem is referenced by: iuneq1d 3988 iunxprg 4046 iununir 4049 iunsuc 4511 rdgisuc1 6530 rdg0 6533 oasuc 6610 omsuc 6618 iunfidisj 7113 fsum2d 11946 fsumiun 11988 fprod2d 12134 iuncld 14789 |
| Copyright terms: Public domain | W3C validator |