Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iuneq1 | Unicode version |
Description: Equality theorem for indexed union. (Contributed by NM, 27-Jun-1998.) |
Ref | Expression |
---|---|
iuneq1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunss1 3884 | . . 3 | |
2 | iunss1 3884 | . . 3 | |
3 | 1, 2 | anim12i 336 | . 2 |
4 | eqss 3162 | . 2 | |
5 | eqss 3162 | . 2 | |
6 | 3, 4, 5 | 3imtr4i 200 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wss 3121 ciun 3873 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-in 3127 df-ss 3134 df-iun 3875 |
This theorem is referenced by: iuneq1d 3896 iunxprg 3953 iununir 3956 iunsuc 4405 rdgisuc1 6363 rdg0 6366 oasuc 6443 omsuc 6451 iunfidisj 6923 fsum2d 11398 fsumiun 11440 fprod2d 11586 iuncld 12909 |
Copyright terms: Public domain | W3C validator |