Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iuneq1 | Unicode version |
Description: Equality theorem for indexed union. (Contributed by NM, 27-Jun-1998.) |
Ref | Expression |
---|---|
iuneq1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunss1 3877 | . . 3 | |
2 | iunss1 3877 | . . 3 | |
3 | 1, 2 | anim12i 336 | . 2 |
4 | eqss 3157 | . 2 | |
5 | eqss 3157 | . 2 | |
6 | 3, 4, 5 | 3imtr4i 200 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wss 3116 ciun 3866 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-in 3122 df-ss 3129 df-iun 3868 |
This theorem is referenced by: iuneq1d 3889 iunxprg 3946 iununir 3949 iunsuc 4398 rdgisuc1 6352 rdg0 6355 oasuc 6432 omsuc 6440 iunfidisj 6911 fsum2d 11376 fsumiun 11418 fprod2d 11564 iuncld 12755 |
Copyright terms: Public domain | W3C validator |