ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iuneq1 Unicode version

Theorem iuneq1 3911
Description: Equality theorem for indexed union. (Contributed by NM, 27-Jun-1998.)
Assertion
Ref Expression
iuneq1  |-  ( A  =  B  ->  U_ x  e.  A  C  =  U_ x  e.  B  C
)
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    C( x)

Proof of Theorem iuneq1
StepHypRef Expression
1 iunss1 3909 . . 3  |-  ( A 
C_  B  ->  U_ x  e.  A  C  C_  U_ x  e.  B  C )
2 iunss1 3909 . . 3  |-  ( B 
C_  A  ->  U_ x  e.  B  C  C_  U_ x  e.  A  C )
31, 2anim12i 338 . 2  |-  ( ( A  C_  B  /\  B  C_  A )  -> 
( U_ x  e.  A  C  C_  U_ x  e.  B  C  /\  U_ x  e.  B  C  C_ 
U_ x  e.  A  C ) )
4 eqss 3182 . 2  |-  ( A  =  B  <->  ( A  C_  B  /\  B  C_  A ) )
5 eqss 3182 . 2  |-  ( U_ x  e.  A  C  =  U_ x  e.  B  C 
<->  ( U_ x  e.  A  C  C_  U_ x  e.  B  C  /\  U_ x  e.  B  C  C_ 
U_ x  e.  A  C ) )
63, 4, 53imtr4i 201 1  |-  ( A  =  B  ->  U_ x  e.  A  C  =  U_ x  e.  B  C
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1363    C_ wss 3141   U_ciun 3898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-v 2751  df-in 3147  df-ss 3154  df-iun 3900
This theorem is referenced by:  iuneq1d  3921  iunxprg  3979  iununir  3982  iunsuc  4432  rdgisuc1  6398  rdg0  6401  oasuc  6478  omsuc  6486  iunfidisj  6958  fsum2d  11456  fsumiun  11498  fprod2d  11644  iuncld  13886
  Copyright terms: Public domain W3C validator