ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iuneq1 Unicode version

Theorem iuneq1 3926
Description: Equality theorem for indexed union. (Contributed by NM, 27-Jun-1998.)
Assertion
Ref Expression
iuneq1  |-  ( A  =  B  ->  U_ x  e.  A  C  =  U_ x  e.  B  C
)
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    C( x)

Proof of Theorem iuneq1
StepHypRef Expression
1 iunss1 3924 . . 3  |-  ( A 
C_  B  ->  U_ x  e.  A  C  C_  U_ x  e.  B  C )
2 iunss1 3924 . . 3  |-  ( B 
C_  A  ->  U_ x  e.  B  C  C_  U_ x  e.  A  C )
31, 2anim12i 338 . 2  |-  ( ( A  C_  B  /\  B  C_  A )  -> 
( U_ x  e.  A  C  C_  U_ x  e.  B  C  /\  U_ x  e.  B  C  C_ 
U_ x  e.  A  C ) )
4 eqss 3195 . 2  |-  ( A  =  B  <->  ( A  C_  B  /\  B  C_  A ) )
5 eqss 3195 . 2  |-  ( U_ x  e.  A  C  =  U_ x  e.  B  C 
<->  ( U_ x  e.  A  C  C_  U_ x  e.  B  C  /\  U_ x  e.  B  C  C_ 
U_ x  e.  A  C ) )
63, 4, 53imtr4i 201 1  |-  ( A  =  B  ->  U_ x  e.  A  C  =  U_ x  e.  B  C
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    C_ wss 3154   U_ciun 3913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-in 3160  df-ss 3167  df-iun 3915
This theorem is referenced by:  iuneq1d  3936  iunxprg  3994  iununir  3997  iunsuc  4452  rdgisuc1  6439  rdg0  6442  oasuc  6519  omsuc  6527  iunfidisj  7007  fsum2d  11581  fsumiun  11623  fprod2d  11769  iuncld  14294
  Copyright terms: Public domain W3C validator