ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunss1 Unicode version

Theorem iunss1 3909
Description: Subclass theorem for indexed union. (Contributed by NM, 10-Dec-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
iunss1  |-  ( A 
C_  B  ->  U_ x  e.  A  C  C_  U_ x  e.  B  C )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    C( x)

Proof of Theorem iunss1
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ssrexv 3232 . . 3  |-  ( A 
C_  B  ->  ( E. x  e.  A  y  e.  C  ->  E. x  e.  B  y  e.  C ) )
2 eliun 3902 . . 3  |-  ( y  e.  U_ x  e.  A  C  <->  E. x  e.  A  y  e.  C )
3 eliun 3902 . . 3  |-  ( y  e.  U_ x  e.  B  C  <->  E. x  e.  B  y  e.  C )
41, 2, 33imtr4g 205 . 2  |-  ( A 
C_  B  ->  (
y  e.  U_ x  e.  A  C  ->  y  e.  U_ x  e.  B  C ) )
54ssrdv 3173 1  |-  ( A 
C_  B  ->  U_ x  e.  A  C  C_  U_ x  e.  B  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2158   E.wrex 2466    C_ wss 3141   U_ciun 3898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-v 2751  df-in 3147  df-ss 3154  df-iun 3900
This theorem is referenced by:  iuneq1  3911  iunxdif2  3947  fsumiun  11499
  Copyright terms: Public domain W3C validator