ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunss1 Unicode version

Theorem iunss1 3923
Description: Subclass theorem for indexed union. (Contributed by NM, 10-Dec-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
iunss1  |-  ( A 
C_  B  ->  U_ x  e.  A  C  C_  U_ x  e.  B  C )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    C( x)

Proof of Theorem iunss1
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ssrexv 3244 . . 3  |-  ( A 
C_  B  ->  ( E. x  e.  A  y  e.  C  ->  E. x  e.  B  y  e.  C ) )
2 eliun 3916 . . 3  |-  ( y  e.  U_ x  e.  A  C  <->  E. x  e.  A  y  e.  C )
3 eliun 3916 . . 3  |-  ( y  e.  U_ x  e.  B  C  <->  E. x  e.  B  y  e.  C )
41, 2, 33imtr4g 205 . 2  |-  ( A 
C_  B  ->  (
y  e.  U_ x  e.  A  C  ->  y  e.  U_ x  e.  B  C ) )
54ssrdv 3185 1  |-  ( A 
C_  B  ->  U_ x  e.  A  C  C_  U_ x  e.  B  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2164   E.wrex 2473    C_ wss 3153   U_ciun 3912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-in 3159  df-ss 3166  df-iun 3914
This theorem is referenced by:  iuneq1  3925  iunxdif2  3961  fsumiun  11610
  Copyright terms: Public domain W3C validator