ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  indif GIF version

Theorem indif 3380
Description: Intersection with class difference. Theorem 34 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
indif (𝐴 ∩ (𝐴𝐵)) = (𝐴𝐵)

Proof of Theorem indif
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 anabs5 573 . . 3 ((𝑥𝐴 ∧ (𝑥𝐴 ∧ ¬ 𝑥𝐵)) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
2 elin 3320 . . . 4 (𝑥 ∈ (𝐴 ∩ (𝐴𝐵)) ↔ (𝑥𝐴𝑥 ∈ (𝐴𝐵)))
3 eldif 3140 . . . . 5 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
43anbi2i 457 . . . 4 ((𝑥𝐴𝑥 ∈ (𝐴𝐵)) ↔ (𝑥𝐴 ∧ (𝑥𝐴 ∧ ¬ 𝑥𝐵)))
52, 4bitri 184 . . 3 (𝑥 ∈ (𝐴 ∩ (𝐴𝐵)) ↔ (𝑥𝐴 ∧ (𝑥𝐴 ∧ ¬ 𝑥𝐵)))
61, 5, 33bitr4i 212 . 2 (𝑥 ∈ (𝐴 ∩ (𝐴𝐵)) ↔ 𝑥 ∈ (𝐴𝐵))
76eqriv 2174 1 (𝐴 ∩ (𝐴𝐵)) = (𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104   = wceq 1353  wcel 2148  cdif 3128  cin 3130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-dif 3133  df-in 3137
This theorem is referenced by:  resdif  5485
  Copyright terms: Public domain W3C validator