![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > indif | GIF version |
Description: Intersection with class difference. Theorem 34 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.) |
Ref | Expression |
---|---|
indif | ⊢ (𝐴 ∩ (𝐴 ∖ 𝐵)) = (𝐴 ∖ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anabs5 573 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
2 | elin 3342 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∩ (𝐴 ∖ 𝐵)) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝐵))) | |
3 | eldif 3162 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
4 | 3 | anbi2i 457 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝐵)) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵))) |
5 | 2, 4 | bitri 184 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ (𝐴 ∖ 𝐵)) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵))) |
6 | 1, 5, 3 | 3bitr4i 212 | . 2 ⊢ (𝑥 ∈ (𝐴 ∩ (𝐴 ∖ 𝐵)) ↔ 𝑥 ∈ (𝐴 ∖ 𝐵)) |
7 | 6 | eqriv 2190 | 1 ⊢ (𝐴 ∩ (𝐴 ∖ 𝐵)) = (𝐴 ∖ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ∖ cdif 3150 ∩ cin 3152 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-dif 3155 df-in 3159 |
This theorem is referenced by: resdif 5522 |
Copyright terms: Public domain | W3C validator |