Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > indif | GIF version |
Description: Intersection with class difference. Theorem 34 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.) |
Ref | Expression |
---|---|
indif | ⊢ (𝐴 ∩ (𝐴 ∖ 𝐵)) = (𝐴 ∖ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anabs5 563 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
2 | elin 3290 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∩ (𝐴 ∖ 𝐵)) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝐵))) | |
3 | eldif 3111 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
4 | 3 | anbi2i 453 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝐵)) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵))) |
5 | 2, 4 | bitri 183 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ (𝐴 ∖ 𝐵)) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵))) |
6 | 1, 5, 3 | 3bitr4i 211 | . 2 ⊢ (𝑥 ∈ (𝐴 ∩ (𝐴 ∖ 𝐵)) ↔ 𝑥 ∈ (𝐴 ∖ 𝐵)) |
7 | 6 | eqriv 2154 | 1 ⊢ (𝐴 ∩ (𝐴 ∖ 𝐵)) = (𝐴 ∖ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 103 = wceq 1335 ∈ wcel 2128 ∖ cdif 3099 ∩ cin 3101 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-dif 3104 df-in 3108 |
This theorem is referenced by: resdif 5433 |
Copyright terms: Public domain | W3C validator |