![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > indif | GIF version |
Description: Intersection with class difference. Theorem 34 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.) |
Ref | Expression |
---|---|
indif | ⊢ (𝐴 ∩ (𝐴 ∖ 𝐵)) = (𝐴 ∖ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anabs5 545 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
2 | elin 3223 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∩ (𝐴 ∖ 𝐵)) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝐵))) | |
3 | eldif 3044 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
4 | 3 | anbi2i 450 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (𝐴 ∖ 𝐵)) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵))) |
5 | 2, 4 | bitri 183 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ (𝐴 ∖ 𝐵)) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵))) |
6 | 1, 5, 3 | 3bitr4i 211 | . 2 ⊢ (𝑥 ∈ (𝐴 ∩ (𝐴 ∖ 𝐵)) ↔ 𝑥 ∈ (𝐴 ∖ 𝐵)) |
7 | 6 | eqriv 2110 | 1 ⊢ (𝐴 ∩ (𝐴 ∖ 𝐵)) = (𝐴 ∖ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 103 = wceq 1312 ∈ wcel 1461 ∖ cdif 3032 ∩ cin 3034 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 |
This theorem depends on definitions: df-bi 116 df-tru 1315 df-nf 1418 df-sb 1717 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-v 2657 df-dif 3037 df-in 3041 |
This theorem is referenced by: resdif 5343 |
Copyright terms: Public domain | W3C validator |