ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ineqan12d Unicode version

Theorem ineqan12d 3366
Description: Equality deduction for intersection of two classes. (Contributed by NM, 7-Feb-2007.)
Hypotheses
Ref Expression
ineq1d.1  |-  ( ph  ->  A  =  B )
ineqan12d.2  |-  ( ps 
->  C  =  D
)
Assertion
Ref Expression
ineqan12d  |-  ( (
ph  /\  ps )  ->  ( A  i^i  C
)  =  ( B  i^i  D ) )

Proof of Theorem ineqan12d
StepHypRef Expression
1 ineq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 ineqan12d.2 . 2  |-  ( ps 
->  C  =  D
)
3 ineq12 3359 . 2  |-  ( ( A  =  B  /\  C  =  D )  ->  ( A  i^i  C
)  =  ( B  i^i  D ) )
41, 2, 3syl2an 289 1  |-  ( (
ph  /\  ps )  ->  ( A  i^i  C
)  =  ( B  i^i  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    i^i cin 3156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-in 3163
This theorem is referenced by:  fvun1  5627  fndmin  5669  offval  6143  ofrfval  6144  offval3  6191  iooinsup  11442
  Copyright terms: Public domain W3C validator