ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ineqan12d Unicode version

Theorem ineqan12d 3384
Description: Equality deduction for intersection of two classes. (Contributed by NM, 7-Feb-2007.)
Hypotheses
Ref Expression
ineq1d.1  |-  ( ph  ->  A  =  B )
ineqan12d.2  |-  ( ps 
->  C  =  D
)
Assertion
Ref Expression
ineqan12d  |-  ( (
ph  /\  ps )  ->  ( A  i^i  C
)  =  ( B  i^i  D ) )

Proof of Theorem ineqan12d
StepHypRef Expression
1 ineq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 ineqan12d.2 . 2  |-  ( ps 
->  C  =  D
)
3 ineq12 3377 . 2  |-  ( ( A  =  B  /\  C  =  D )  ->  ( A  i^i  C
)  =  ( B  i^i  D ) )
41, 2, 3syl2an 289 1  |-  ( (
ph  /\  ps )  ->  ( A  i^i  C
)  =  ( B  i^i  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    i^i cin 3173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-in 3180
This theorem is referenced by:  fvun1  5668  fndmin  5710  offval  6189  ofrfval  6190  offval3  6242  iooinsup  11703
  Copyright terms: Public domain W3C validator