ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  offval3 Unicode version

Theorem offval3 6095
Description: General value of  ( F  oF R G ) with no assumptions on functionality of  F and  G. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Assertion
Ref Expression
offval3  |-  ( ( F  e.  V  /\  G  e.  W )  ->  ( F  oF R G )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( F `
 x ) R ( G `  x
) ) ) )
Distinct variable groups:    x, F    x, G    x, V    x, W    x, R

Proof of Theorem offval3
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2733 . . 3  |-  ( F  e.  V  ->  F  e.  _V )
21adantr 274 . 2  |-  ( ( F  e.  V  /\  G  e.  W )  ->  F  e.  _V )
3 elex 2733 . . 3  |-  ( G  e.  W  ->  G  e.  _V )
43adantl 275 . 2  |-  ( ( F  e.  V  /\  G  e.  W )  ->  G  e.  _V )
5 dmexg 4863 . . . 4  |-  ( F  e.  V  ->  dom  F  e.  _V )
6 inex1g 4113 . . . 4  |-  ( dom 
F  e.  _V  ->  ( dom  F  i^i  dom  G )  e.  _V )
7 mptexg 5705 . . . 4  |-  ( ( dom  F  i^i  dom  G )  e.  _V  ->  ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( ( F `  x ) R ( G `  x ) ) )  e.  _V )
85, 6, 73syl 17 . . 3  |-  ( F  e.  V  ->  (
x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( ( F `  x ) R ( G `  x ) ) )  e.  _V )
98adantr 274 . 2  |-  ( ( F  e.  V  /\  G  e.  W )  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( F `
 x ) R ( G `  x
) ) )  e. 
_V )
10 dmeq 4799 . . . . 5  |-  ( a  =  F  ->  dom  a  =  dom  F )
11 dmeq 4799 . . . . 5  |-  ( b  =  G  ->  dom  b  =  dom  G )
1210, 11ineqan12d 3321 . . . 4  |-  ( ( a  =  F  /\  b  =  G )  ->  ( dom  a  i^i 
dom  b )  =  ( dom  F  i^i  dom 
G ) )
13 fveq1 5480 . . . . 5  |-  ( a  =  F  ->  (
a `  x )  =  ( F `  x ) )
14 fveq1 5480 . . . . 5  |-  ( b  =  G  ->  (
b `  x )  =  ( G `  x ) )
1513, 14oveqan12d 5856 . . . 4  |-  ( ( a  =  F  /\  b  =  G )  ->  ( ( a `  x ) R ( b `  x ) )  =  ( ( F `  x ) R ( G `  x ) ) )
1612, 15mpteq12dv 4059 . . 3  |-  ( ( a  =  F  /\  b  =  G )  ->  ( x  e.  ( dom  a  i^i  dom  b )  |->  ( ( a `  x ) R ( b `  x ) ) )  =  ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( ( F `  x ) R ( G `  x ) ) ) )
17 df-of 6045 . . 3  |-  oF R  =  ( a  e.  _V ,  b  e.  _V  |->  ( x  e.  ( dom  a  i^i  dom  b )  |->  ( ( a `  x
) R ( b `
 x ) ) ) )
1816, 17ovmpoga 5963 . 2  |-  ( ( F  e.  _V  /\  G  e.  _V  /\  (
x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( ( F `  x ) R ( G `  x ) ) )  e.  _V )  ->  ( F  oF R G )  =  ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( ( F `  x ) R ( G `  x ) ) ) )
192, 4, 9, 18syl3anc 1227 1  |-  ( ( F  e.  V  /\  G  e.  W )  ->  ( F  oF R G )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( F `
 x ) R ( G `  x
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1342    e. wcel 2135   _Vcvv 2722    i^i cin 3111    |-> cmpt 4038   dom cdm 4599   ` cfv 5183  (class class class)co 5837    oFcof 6043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4092  ax-sep 4095  ax-pow 4148  ax-pr 4182  ax-un 4406  ax-setind 4509
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2724  df-sbc 2948  df-csb 3042  df-dif 3114  df-un 3116  df-in 3118  df-ss 3125  df-pw 3556  df-sn 3577  df-pr 3578  df-op 3580  df-uni 3785  df-iun 3863  df-br 3978  df-opab 4039  df-mpt 4040  df-id 4266  df-xp 4605  df-rel 4606  df-cnv 4607  df-co 4608  df-dm 4609  df-rn 4610  df-res 4611  df-ima 4612  df-iota 5148  df-fun 5185  df-fn 5186  df-f 5187  df-f1 5188  df-fo 5189  df-f1o 5190  df-fv 5191  df-ov 5840  df-oprab 5841  df-mpo 5842  df-of 6045
This theorem is referenced by:  offres  6096
  Copyright terms: Public domain W3C validator