ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  offval3 Unicode version

Theorem offval3 6040
Description: General value of  ( F  oF R G ) with no assumptions on functionality of  F and  G. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Assertion
Ref Expression
offval3  |-  ( ( F  e.  V  /\  G  e.  W )  ->  ( F  oF R G )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( F `
 x ) R ( G `  x
) ) ) )
Distinct variable groups:    x, F    x, G    x, V    x, W    x, R

Proof of Theorem offval3
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2700 . . 3  |-  ( F  e.  V  ->  F  e.  _V )
21adantr 274 . 2  |-  ( ( F  e.  V  /\  G  e.  W )  ->  F  e.  _V )
3 elex 2700 . . 3  |-  ( G  e.  W  ->  G  e.  _V )
43adantl 275 . 2  |-  ( ( F  e.  V  /\  G  e.  W )  ->  G  e.  _V )
5 dmexg 4811 . . . 4  |-  ( F  e.  V  ->  dom  F  e.  _V )
6 inex1g 4072 . . . 4  |-  ( dom 
F  e.  _V  ->  ( dom  F  i^i  dom  G )  e.  _V )
7 mptexg 5653 . . . 4  |-  ( ( dom  F  i^i  dom  G )  e.  _V  ->  ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( ( F `  x ) R ( G `  x ) ) )  e.  _V )
85, 6, 73syl 17 . . 3  |-  ( F  e.  V  ->  (
x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( ( F `  x ) R ( G `  x ) ) )  e.  _V )
98adantr 274 . 2  |-  ( ( F  e.  V  /\  G  e.  W )  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( F `
 x ) R ( G `  x
) ) )  e. 
_V )
10 dmeq 4747 . . . . 5  |-  ( a  =  F  ->  dom  a  =  dom  F )
11 dmeq 4747 . . . . 5  |-  ( b  =  G  ->  dom  b  =  dom  G )
1210, 11ineqan12d 3284 . . . 4  |-  ( ( a  =  F  /\  b  =  G )  ->  ( dom  a  i^i 
dom  b )  =  ( dom  F  i^i  dom 
G ) )
13 fveq1 5428 . . . . 5  |-  ( a  =  F  ->  (
a `  x )  =  ( F `  x ) )
14 fveq1 5428 . . . . 5  |-  ( b  =  G  ->  (
b `  x )  =  ( G `  x ) )
1513, 14oveqan12d 5801 . . . 4  |-  ( ( a  =  F  /\  b  =  G )  ->  ( ( a `  x ) R ( b `  x ) )  =  ( ( F `  x ) R ( G `  x ) ) )
1612, 15mpteq12dv 4018 . . 3  |-  ( ( a  =  F  /\  b  =  G )  ->  ( x  e.  ( dom  a  i^i  dom  b )  |->  ( ( a `  x ) R ( b `  x ) ) )  =  ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( ( F `  x ) R ( G `  x ) ) ) )
17 df-of 5990 . . 3  |-  oF R  =  ( a  e.  _V ,  b  e.  _V  |->  ( x  e.  ( dom  a  i^i  dom  b )  |->  ( ( a `  x
) R ( b `
 x ) ) ) )
1816, 17ovmpoga 5908 . 2  |-  ( ( F  e.  _V  /\  G  e.  _V  /\  (
x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( ( F `  x ) R ( G `  x ) ) )  e.  _V )  ->  ( F  oF R G )  =  ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( ( F `  x ) R ( G `  x ) ) ) )
192, 4, 9, 18syl3anc 1217 1  |-  ( ( F  e.  V  /\  G  e.  W )  ->  ( F  oF R G )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( F `
 x ) R ( G `  x
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1332    e. wcel 1481   _Vcvv 2689    i^i cin 3075    |-> cmpt 3997   dom cdm 4547   ` cfv 5131  (class class class)co 5782    oFcof 5988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-of 5990
This theorem is referenced by:  offres  6041
  Copyright terms: Public domain W3C validator