Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > offval3 | Unicode version |
Description: General value of with no assumptions on functionality of and . (Contributed by Stefan O'Rear, 24-Jan-2015.) |
Ref | Expression |
---|---|
offval3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2733 | . . 3 | |
2 | 1 | adantr 274 | . 2 |
3 | elex 2733 | . . 3 | |
4 | 3 | adantl 275 | . 2 |
5 | dmexg 4863 | . . . 4 | |
6 | inex1g 4113 | . . . 4 | |
7 | mptexg 5705 | . . . 4 | |
8 | 5, 6, 7 | 3syl 17 | . . 3 |
9 | 8 | adantr 274 | . 2 |
10 | dmeq 4799 | . . . . 5 | |
11 | dmeq 4799 | . . . . 5 | |
12 | 10, 11 | ineqan12d 3321 | . . . 4 |
13 | fveq1 5480 | . . . . 5 | |
14 | fveq1 5480 | . . . . 5 | |
15 | 13, 14 | oveqan12d 5856 | . . . 4 |
16 | 12, 15 | mpteq12dv 4059 | . . 3 |
17 | df-of 6045 | . . 3 | |
18 | 16, 17 | ovmpoga 5963 | . 2 |
19 | 2, 4, 9, 18 | syl3anc 1227 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1342 wcel 2135 cvv 2722 cin 3111 cmpt 4038 cdm 4599 cfv 5183 (class class class)co 5837 cof 6043 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-13 2137 ax-14 2138 ax-ext 2146 ax-coll 4092 ax-sep 4095 ax-pow 4148 ax-pr 4182 ax-un 4406 ax-setind 4509 |
This theorem depends on definitions: df-bi 116 df-3an 969 df-tru 1345 df-fal 1348 df-nf 1448 df-sb 1750 df-eu 2016 df-mo 2017 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ne 2335 df-ral 2447 df-rex 2448 df-reu 2449 df-rab 2451 df-v 2724 df-sbc 2948 df-csb 3042 df-dif 3114 df-un 3116 df-in 3118 df-ss 3125 df-pw 3556 df-sn 3577 df-pr 3578 df-op 3580 df-uni 3785 df-iun 3863 df-br 3978 df-opab 4039 df-mpt 4040 df-id 4266 df-xp 4605 df-rel 4606 df-cnv 4607 df-co 4608 df-dm 4609 df-rn 4610 df-res 4611 df-ima 4612 df-iota 5148 df-fun 5185 df-fn 5186 df-f 5187 df-f1 5188 df-fo 5189 df-f1o 5190 df-fv 5191 df-ov 5840 df-oprab 5841 df-mpo 5842 df-of 6045 |
This theorem is referenced by: offres 6096 |
Copyright terms: Public domain | W3C validator |