Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fndmin | Unicode version |
Description: Two ways to express the locus of equality between two functions. (Contributed by Stefan O'Rear, 17-Jan-2015.) |
Ref | Expression |
---|---|
fndmin |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffn5im 5507 | . . . . . 6 | |
2 | df-mpt 4023 | . . . . . 6 | |
3 | 1, 2 | eqtrdi 2203 | . . . . 5 |
4 | dffn5im 5507 | . . . . . 6 | |
5 | df-mpt 4023 | . . . . . 6 | |
6 | 4, 5 | eqtrdi 2203 | . . . . 5 |
7 | 3, 6 | ineqan12d 3306 | . . . 4 |
8 | inopab 4711 | . . . 4 | |
9 | 7, 8 | eqtrdi 2203 | . . 3 |
10 | 9 | dmeqd 4781 | . 2 |
11 | anandi 580 | . . . . . . . 8 | |
12 | 11 | exbii 1582 | . . . . . . 7 |
13 | 19.42v 1883 | . . . . . . 7 | |
14 | 12, 13 | bitr3i 185 | . . . . . 6 |
15 | funfvex 5478 | . . . . . . . . 9 | |
16 | eqeq1 2161 | . . . . . . . . . 10 | |
17 | 16 | ceqsexgv 2838 | . . . . . . . . 9 |
18 | 15, 17 | syl 14 | . . . . . . . 8 |
19 | 18 | funfni 5263 | . . . . . . 7 |
20 | 19 | pm5.32da 448 | . . . . . 6 |
21 | 14, 20 | syl5bb 191 | . . . . 5 |
22 | 21 | abbidv 2272 | . . . 4 |
23 | dmopab 4790 | . . . 4 | |
24 | df-rab 2441 | . . . 4 | |
25 | 22, 23, 24 | 3eqtr4g 2212 | . . 3 |
26 | 25 | adantr 274 | . 2 |
27 | 10, 26 | eqtrd 2187 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1332 wex 1469 wcel 2125 cab 2140 crab 2436 cvv 2709 cin 3097 copab 4020 cmpt 4021 cdm 4579 wfun 5157 wfn 5158 cfv 5163 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-rex 2438 df-rab 2441 df-v 2711 df-sbc 2934 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-br 3962 df-opab 4022 df-mpt 4023 df-id 4248 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-iota 5128 df-fun 5165 df-fn 5166 df-fv 5171 |
This theorem is referenced by: fneqeql 5568 |
Copyright terms: Public domain | W3C validator |