Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fndmin | Unicode version |
Description: Two ways to express the locus of equality between two functions. (Contributed by Stefan O'Rear, 17-Jan-2015.) |
Ref | Expression |
---|---|
fndmin |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffn5im 5542 | . . . . . 6 | |
2 | df-mpt 4052 | . . . . . 6 | |
3 | 1, 2 | eqtrdi 2219 | . . . . 5 |
4 | dffn5im 5542 | . . . . . 6 | |
5 | df-mpt 4052 | . . . . . 6 | |
6 | 4, 5 | eqtrdi 2219 | . . . . 5 |
7 | 3, 6 | ineqan12d 3330 | . . . 4 |
8 | inopab 4743 | . . . 4 | |
9 | 7, 8 | eqtrdi 2219 | . . 3 |
10 | 9 | dmeqd 4813 | . 2 |
11 | anandi 585 | . . . . . . . 8 | |
12 | 11 | exbii 1598 | . . . . . . 7 |
13 | 19.42v 1899 | . . . . . . 7 | |
14 | 12, 13 | bitr3i 185 | . . . . . 6 |
15 | funfvex 5513 | . . . . . . . . 9 | |
16 | eqeq1 2177 | . . . . . . . . . 10 | |
17 | 16 | ceqsexgv 2859 | . . . . . . . . 9 |
18 | 15, 17 | syl 14 | . . . . . . . 8 |
19 | 18 | funfni 5298 | . . . . . . 7 |
20 | 19 | pm5.32da 449 | . . . . . 6 |
21 | 14, 20 | syl5bb 191 | . . . . 5 |
22 | 21 | abbidv 2288 | . . . 4 |
23 | dmopab 4822 | . . . 4 | |
24 | df-rab 2457 | . . . 4 | |
25 | 22, 23, 24 | 3eqtr4g 2228 | . . 3 |
26 | 25 | adantr 274 | . 2 |
27 | 10, 26 | eqtrd 2203 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wex 1485 wcel 2141 cab 2156 crab 2452 cvv 2730 cin 3120 copab 4049 cmpt 4050 cdm 4611 wfun 5192 wfn 5193 cfv 5198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fn 5201 df-fv 5206 |
This theorem is referenced by: fneqeql 5604 mhmeql 12707 |
Copyright terms: Public domain | W3C validator |