ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fndmin Unicode version

Theorem fndmin 5665
Description: Two ways to express the locus of equality between two functions. (Contributed by Stefan O'Rear, 17-Jan-2015.)
Assertion
Ref Expression
fndmin  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  dom  ( F  i^i  G )  =  { x  e.  A  |  ( F `  x )  =  ( G `  x ) } )
Distinct variable groups:    x, F    x, G    x, A

Proof of Theorem fndmin
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dffn5im 5602 . . . . . 6  |-  ( F  Fn  A  ->  F  =  ( x  e.  A  |->  ( F `  x ) ) )
2 df-mpt 4092 . . . . . 6  |-  ( x  e.  A  |->  ( F `
 x ) )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  ( F `  x ) ) }
31, 2eqtrdi 2242 . . . . 5  |-  ( F  Fn  A  ->  F  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  ( F `  x ) ) } )
4 dffn5im 5602 . . . . . 6  |-  ( G  Fn  A  ->  G  =  ( x  e.  A  |->  ( G `  x ) ) )
5 df-mpt 4092 . . . . . 6  |-  ( x  e.  A  |->  ( G `
 x ) )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  ( G `  x ) ) }
64, 5eqtrdi 2242 . . . . 5  |-  ( G  Fn  A  ->  G  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  ( G `  x ) ) } )
73, 6ineqan12d 3362 . . . 4  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  i^i  G
)  =  ( {
<. x ,  y >.  |  ( x  e.  A  /\  y  =  ( F `  x
) ) }  i^i  {
<. x ,  y >.  |  ( x  e.  A  /\  y  =  ( G `  x
) ) } ) )
8 inopab 4794 . . . 4  |-  ( {
<. x ,  y >.  |  ( x  e.  A  /\  y  =  ( F `  x
) ) }  i^i  {
<. x ,  y >.  |  ( x  e.  A  /\  y  =  ( G `  x
) ) } )  =  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  =  ( F `  x )
)  /\  ( x  e.  A  /\  y  =  ( G `  x ) ) ) }
97, 8eqtrdi 2242 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  i^i  G
)  =  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  =  ( F `  x )
)  /\  ( x  e.  A  /\  y  =  ( G `  x ) ) ) } )
109dmeqd 4864 . 2  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  dom  ( F  i^i  G )  =  dom  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  =  ( F `  x ) )  /\  ( x  e.  A  /\  y  =  ( G `  x )
) ) } )
11 anandi 590 . . . . . . . 8  |-  ( ( x  e.  A  /\  ( y  =  ( F `  x )  /\  y  =  ( G `  x ) ) )  <->  ( (
x  e.  A  /\  y  =  ( F `  x ) )  /\  ( x  e.  A  /\  y  =  ( G `  x )
) ) )
1211exbii 1616 . . . . . . 7  |-  ( E. y ( x  e.  A  /\  ( y  =  ( F `  x )  /\  y  =  ( G `  x ) ) )  <->  E. y ( ( x  e.  A  /\  y  =  ( F `  x ) )  /\  ( x  e.  A  /\  y  =  ( G `  x )
) ) )
13 19.42v 1918 . . . . . . 7  |-  ( E. y ( x  e.  A  /\  ( y  =  ( F `  x )  /\  y  =  ( G `  x ) ) )  <-> 
( x  e.  A  /\  E. y ( y  =  ( F `  x )  /\  y  =  ( G `  x ) ) ) )
1412, 13bitr3i 186 . . . . . 6  |-  ( E. y ( ( x  e.  A  /\  y  =  ( F `  x ) )  /\  ( x  e.  A  /\  y  =  ( G `  x )
) )  <->  ( x  e.  A  /\  E. y
( y  =  ( F `  x )  /\  y  =  ( G `  x ) ) ) )
15 funfvex 5571 . . . . . . . . 9  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( F `  x
)  e.  _V )
16 eqeq1 2200 . . . . . . . . . 10  |-  ( y  =  ( F `  x )  ->  (
y  =  ( G `
 x )  <->  ( F `  x )  =  ( G `  x ) ) )
1716ceqsexgv 2889 . . . . . . . . 9  |-  ( ( F `  x )  e.  _V  ->  ( E. y ( y  =  ( F `  x
)  /\  y  =  ( G `  x ) )  <->  ( F `  x )  =  ( G `  x ) ) )
1815, 17syl 14 . . . . . . . 8  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( E. y ( y  =  ( F `
 x )  /\  y  =  ( G `  x ) )  <->  ( F `  x )  =  ( G `  x ) ) )
1918funfni 5354 . . . . . . 7  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( E. y ( y  =  ( F `
 x )  /\  y  =  ( G `  x ) )  <->  ( F `  x )  =  ( G `  x ) ) )
2019pm5.32da 452 . . . . . 6  |-  ( F  Fn  A  ->  (
( x  e.  A  /\  E. y ( y  =  ( F `  x )  /\  y  =  ( G `  x ) ) )  <-> 
( x  e.  A  /\  ( F `  x
)  =  ( G `
 x ) ) ) )
2114, 20bitrid 192 . . . . 5  |-  ( F  Fn  A  ->  ( E. y ( ( x  e.  A  /\  y  =  ( F `  x ) )  /\  ( x  e.  A  /\  y  =  ( G `  x )
) )  <->  ( x  e.  A  /\  ( F `  x )  =  ( G `  x ) ) ) )
2221abbidv 2311 . . . 4  |-  ( F  Fn  A  ->  { x  |  E. y ( ( x  e.  A  /\  y  =  ( F `  x ) )  /\  ( x  e.  A  /\  y  =  ( G `  x )
) ) }  =  { x  |  (
x  e.  A  /\  ( F `  x )  =  ( G `  x ) ) } )
23 dmopab 4873 . . . 4  |-  dom  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  =  ( F `  x ) )  /\  ( x  e.  A  /\  y  =  ( G `  x )
) ) }  =  { x  |  E. y ( ( x  e.  A  /\  y  =  ( F `  x ) )  /\  ( x  e.  A  /\  y  =  ( G `  x )
) ) }
24 df-rab 2481 . . . 4  |-  { x  e.  A  |  ( F `  x )  =  ( G `  x ) }  =  { x  |  (
x  e.  A  /\  ( F `  x )  =  ( G `  x ) ) }
2522, 23, 243eqtr4g 2251 . . 3  |-  ( F  Fn  A  ->  dom  {
<. x ,  y >.  |  ( ( x  e.  A  /\  y  =  ( F `  x ) )  /\  ( x  e.  A  /\  y  =  ( G `  x )
) ) }  =  { x  e.  A  |  ( F `  x )  =  ( G `  x ) } )
2625adantr 276 . 2  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  dom  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  =  ( F `  x )
)  /\  ( x  e.  A  /\  y  =  ( G `  x ) ) ) }  =  { x  e.  A  |  ( F `  x )  =  ( G `  x ) } )
2710, 26eqtrd 2226 1  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  dom  ( F  i^i  G )  =  { x  e.  A  |  ( F `  x )  =  ( G `  x ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   E.wex 1503    e. wcel 2164   {cab 2179   {crab 2476   _Vcvv 2760    i^i cin 3152   {copab 4089    |-> cmpt 4090   dom cdm 4659   Fun wfun 5248    Fn wfn 5249   ` cfv 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262
This theorem is referenced by:  fneqeql  5666  mhmeql  13064  ghmeql  13337
  Copyright terms: Public domain W3C validator