Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fndmin | Unicode version |
Description: Two ways to express the locus of equality between two functions. (Contributed by Stefan O'Rear, 17-Jan-2015.) |
Ref | Expression |
---|---|
fndmin |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffn5im 5532 | . . . . . 6 | |
2 | df-mpt 4045 | . . . . . 6 | |
3 | 1, 2 | eqtrdi 2215 | . . . . 5 |
4 | dffn5im 5532 | . . . . . 6 | |
5 | df-mpt 4045 | . . . . . 6 | |
6 | 4, 5 | eqtrdi 2215 | . . . . 5 |
7 | 3, 6 | ineqan12d 3325 | . . . 4 |
8 | inopab 4736 | . . . 4 | |
9 | 7, 8 | eqtrdi 2215 | . . 3 |
10 | 9 | dmeqd 4806 | . 2 |
11 | anandi 580 | . . . . . . . 8 | |
12 | 11 | exbii 1593 | . . . . . . 7 |
13 | 19.42v 1894 | . . . . . . 7 | |
14 | 12, 13 | bitr3i 185 | . . . . . 6 |
15 | funfvex 5503 | . . . . . . . . 9 | |
16 | eqeq1 2172 | . . . . . . . . . 10 | |
17 | 16 | ceqsexgv 2855 | . . . . . . . . 9 |
18 | 15, 17 | syl 14 | . . . . . . . 8 |
19 | 18 | funfni 5288 | . . . . . . 7 |
20 | 19 | pm5.32da 448 | . . . . . 6 |
21 | 14, 20 | syl5bb 191 | . . . . 5 |
22 | 21 | abbidv 2284 | . . . 4 |
23 | dmopab 4815 | . . . 4 | |
24 | df-rab 2453 | . . . 4 | |
25 | 22, 23, 24 | 3eqtr4g 2224 | . . 3 |
26 | 25 | adantr 274 | . 2 |
27 | 10, 26 | eqtrd 2198 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wex 1480 wcel 2136 cab 2151 crab 2448 cvv 2726 cin 3115 copab 4042 cmpt 4043 cdm 4604 wfun 5182 wfn 5183 cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fn 5191 df-fv 5196 |
This theorem is referenced by: fneqeql 5593 |
Copyright terms: Public domain | W3C validator |