| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fndmin | Unicode version | ||
| Description: Two ways to express the locus of equality between two functions. (Contributed by Stefan O'Rear, 17-Jan-2015.) |
| Ref | Expression |
|---|---|
| fndmin |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffn5im 5624 |
. . . . . 6
| |
| 2 | df-mpt 4107 |
. . . . . 6
| |
| 3 | 1, 2 | eqtrdi 2254 |
. . . . 5
|
| 4 | dffn5im 5624 |
. . . . . 6
| |
| 5 | df-mpt 4107 |
. . . . . 6
| |
| 6 | 4, 5 | eqtrdi 2254 |
. . . . 5
|
| 7 | 3, 6 | ineqan12d 3376 |
. . . 4
|
| 8 | inopab 4810 |
. . . 4
| |
| 9 | 7, 8 | eqtrdi 2254 |
. . 3
|
| 10 | 9 | dmeqd 4880 |
. 2
|
| 11 | anandi 590 |
. . . . . . . 8
| |
| 12 | 11 | exbii 1628 |
. . . . . . 7
|
| 13 | 19.42v 1930 |
. . . . . . 7
| |
| 14 | 12, 13 | bitr3i 186 |
. . . . . 6
|
| 15 | funfvex 5593 |
. . . . . . . . 9
| |
| 16 | eqeq1 2212 |
. . . . . . . . . 10
| |
| 17 | 16 | ceqsexgv 2902 |
. . . . . . . . 9
|
| 18 | 15, 17 | syl 14 |
. . . . . . . 8
|
| 19 | 18 | funfni 5376 |
. . . . . . 7
|
| 20 | 19 | pm5.32da 452 |
. . . . . 6
|
| 21 | 14, 20 | bitrid 192 |
. . . . 5
|
| 22 | 21 | abbidv 2323 |
. . . 4
|
| 23 | dmopab 4889 |
. . . 4
| |
| 24 | df-rab 2493 |
. . . 4
| |
| 25 | 22, 23, 24 | 3eqtr4g 2263 |
. . 3
|
| 26 | 25 | adantr 276 |
. 2
|
| 27 | 10, 26 | eqtrd 2238 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fn 5274 df-fv 5279 |
| This theorem is referenced by: fneqeql 5688 mhmeql 13324 ghmeql 13603 |
| Copyright terms: Public domain | W3C validator |