ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fndmin Unicode version

Theorem fndmin 5493
Description: Two ways to express the locus of equality between two functions. (Contributed by Stefan O'Rear, 17-Jan-2015.)
Assertion
Ref Expression
fndmin  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  dom  ( F  i^i  G )  =  { x  e.  A  |  ( F `  x )  =  ( G `  x ) } )
Distinct variable groups:    x, F    x, G    x, A

Proof of Theorem fndmin
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dffn5im 5433 . . . . . 6  |-  ( F  Fn  A  ->  F  =  ( x  e.  A  |->  ( F `  x ) ) )
2 df-mpt 3959 . . . . . 6  |-  ( x  e.  A  |->  ( F `
 x ) )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  ( F `  x ) ) }
31, 2syl6eq 2164 . . . . 5  |-  ( F  Fn  A  ->  F  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  ( F `  x ) ) } )
4 dffn5im 5433 . . . . . 6  |-  ( G  Fn  A  ->  G  =  ( x  e.  A  |->  ( G `  x ) ) )
5 df-mpt 3959 . . . . . 6  |-  ( x  e.  A  |->  ( G `
 x ) )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  ( G `  x ) ) }
64, 5syl6eq 2164 . . . . 5  |-  ( G  Fn  A  ->  G  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  ( G `  x ) ) } )
73, 6ineqan12d 3247 . . . 4  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  i^i  G
)  =  ( {
<. x ,  y >.  |  ( x  e.  A  /\  y  =  ( F `  x
) ) }  i^i  {
<. x ,  y >.  |  ( x  e.  A  /\  y  =  ( G `  x
) ) } ) )
8 inopab 4639 . . . 4  |-  ( {
<. x ,  y >.  |  ( x  e.  A  /\  y  =  ( F `  x
) ) }  i^i  {
<. x ,  y >.  |  ( x  e.  A  /\  y  =  ( G `  x
) ) } )  =  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  =  ( F `  x )
)  /\  ( x  e.  A  /\  y  =  ( G `  x ) ) ) }
97, 8syl6eq 2164 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  i^i  G
)  =  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  =  ( F `  x )
)  /\  ( x  e.  A  /\  y  =  ( G `  x ) ) ) } )
109dmeqd 4709 . 2  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  dom  ( F  i^i  G )  =  dom  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  =  ( F `  x ) )  /\  ( x  e.  A  /\  y  =  ( G `  x )
) ) } )
11 anandi 562 . . . . . . . 8  |-  ( ( x  e.  A  /\  ( y  =  ( F `  x )  /\  y  =  ( G `  x ) ) )  <->  ( (
x  e.  A  /\  y  =  ( F `  x ) )  /\  ( x  e.  A  /\  y  =  ( G `  x )
) ) )
1211exbii 1567 . . . . . . 7  |-  ( E. y ( x  e.  A  /\  ( y  =  ( F `  x )  /\  y  =  ( G `  x ) ) )  <->  E. y ( ( x  e.  A  /\  y  =  ( F `  x ) )  /\  ( x  e.  A  /\  y  =  ( G `  x )
) ) )
13 19.42v 1860 . . . . . . 7  |-  ( E. y ( x  e.  A  /\  ( y  =  ( F `  x )  /\  y  =  ( G `  x ) ) )  <-> 
( x  e.  A  /\  E. y ( y  =  ( F `  x )  /\  y  =  ( G `  x ) ) ) )
1412, 13bitr3i 185 . . . . . 6  |-  ( E. y ( ( x  e.  A  /\  y  =  ( F `  x ) )  /\  ( x  e.  A  /\  y  =  ( G `  x )
) )  <->  ( x  e.  A  /\  E. y
( y  =  ( F `  x )  /\  y  =  ( G `  x ) ) ) )
15 funfvex 5404 . . . . . . . . 9  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( F `  x
)  e.  _V )
16 eqeq1 2122 . . . . . . . . . 10  |-  ( y  =  ( F `  x )  ->  (
y  =  ( G `
 x )  <->  ( F `  x )  =  ( G `  x ) ) )
1716ceqsexgv 2786 . . . . . . . . 9  |-  ( ( F `  x )  e.  _V  ->  ( E. y ( y  =  ( F `  x
)  /\  y  =  ( G `  x ) )  <->  ( F `  x )  =  ( G `  x ) ) )
1815, 17syl 14 . . . . . . . 8  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( E. y ( y  =  ( F `
 x )  /\  y  =  ( G `  x ) )  <->  ( F `  x )  =  ( G `  x ) ) )
1918funfni 5191 . . . . . . 7  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( E. y ( y  =  ( F `
 x )  /\  y  =  ( G `  x ) )  <->  ( F `  x )  =  ( G `  x ) ) )
2019pm5.32da 445 . . . . . 6  |-  ( F  Fn  A  ->  (
( x  e.  A  /\  E. y ( y  =  ( F `  x )  /\  y  =  ( G `  x ) ) )  <-> 
( x  e.  A  /\  ( F `  x
)  =  ( G `
 x ) ) ) )
2114, 20syl5bb 191 . . . . 5  |-  ( F  Fn  A  ->  ( E. y ( ( x  e.  A  /\  y  =  ( F `  x ) )  /\  ( x  e.  A  /\  y  =  ( G `  x )
) )  <->  ( x  e.  A  /\  ( F `  x )  =  ( G `  x ) ) ) )
2221abbidv 2233 . . . 4  |-  ( F  Fn  A  ->  { x  |  E. y ( ( x  e.  A  /\  y  =  ( F `  x ) )  /\  ( x  e.  A  /\  y  =  ( G `  x )
) ) }  =  { x  |  (
x  e.  A  /\  ( F `  x )  =  ( G `  x ) ) } )
23 dmopab 4718 . . . 4  |-  dom  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  =  ( F `  x ) )  /\  ( x  e.  A  /\  y  =  ( G `  x )
) ) }  =  { x  |  E. y ( ( x  e.  A  /\  y  =  ( F `  x ) )  /\  ( x  e.  A  /\  y  =  ( G `  x )
) ) }
24 df-rab 2400 . . . 4  |-  { x  e.  A  |  ( F `  x )  =  ( G `  x ) }  =  { x  |  (
x  e.  A  /\  ( F `  x )  =  ( G `  x ) ) }
2522, 23, 243eqtr4g 2173 . . 3  |-  ( F  Fn  A  ->  dom  {
<. x ,  y >.  |  ( ( x  e.  A  /\  y  =  ( F `  x ) )  /\  ( x  e.  A  /\  y  =  ( G `  x )
) ) }  =  { x  e.  A  |  ( F `  x )  =  ( G `  x ) } )
2625adantr 272 . 2  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  dom  { <. x ,  y >.  |  ( ( x  e.  A  /\  y  =  ( F `  x )
)  /\  ( x  e.  A  /\  y  =  ( G `  x ) ) ) }  =  { x  e.  A  |  ( F `  x )  =  ( G `  x ) } )
2710, 26eqtrd 2148 1  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  dom  ( F  i^i  G )  =  { x  e.  A  |  ( F `  x )  =  ( G `  x ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1314   E.wex 1451    e. wcel 1463   {cab 2101   {crab 2395   _Vcvv 2658    i^i cin 3038   {copab 3956    |-> cmpt 3957   dom cdm 4507   Fun wfun 5085    Fn wfn 5086   ` cfv 5091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ral 2396  df-rex 2397  df-rab 2400  df-v 2660  df-sbc 2881  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-br 3898  df-opab 3958  df-mpt 3959  df-id 4183  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-iota 5056  df-fun 5093  df-fn 5094  df-fv 5099
This theorem is referenced by:  fneqeql  5494
  Copyright terms: Public domain W3C validator