ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ineq12 Unicode version

Theorem ineq12 3355
Description: Equality theorem for intersection of two classes. (Contributed by NM, 8-May-1994.)
Assertion
Ref Expression
ineq12  |-  ( ( A  =  B  /\  C  =  D )  ->  ( A  i^i  C
)  =  ( B  i^i  D ) )

Proof of Theorem ineq12
StepHypRef Expression
1 ineq1 3353 . 2  |-  ( A  =  B  ->  ( A  i^i  C )  =  ( B  i^i  C
) )
2 ineq2 3354 . 2  |-  ( C  =  D  ->  ( B  i^i  C )  =  ( B  i^i  D
) )
31, 2sylan9eq 2246 1  |-  ( ( A  =  B  /\  C  =  D )  ->  ( A  i^i  C
)  =  ( B  i^i  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    i^i cin 3152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-in 3159
This theorem is referenced by:  ineq12i  3358  ineq12d  3361  ineqan12d  3362  fnun  5360  endisj  6878  sbthlemi8  7023  pm54.43  7250  epttop  14258  restbasg  14336  txbas  14426  bj-inex  15399
  Copyright terms: Public domain W3C validator