| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ofrfval | Unicode version | ||
| Description: Value of a relation applied to two functions. (Contributed by Mario Carneiro, 28-Jul-2014.) |
| Ref | Expression |
|---|---|
| offval.1 |
|
| offval.2 |
|
| offval.3 |
|
| offval.4 |
|
| offval.5 |
|
| offval.6 |
|
| offval.7 |
|
| Ref | Expression |
|---|---|
| ofrfval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | offval.1 |
. . . 4
| |
| 2 | offval.3 |
. . . 4
| |
| 3 | fnex 5860 |
. . . 4
| |
| 4 | 1, 2, 3 | syl2anc 411 |
. . 3
|
| 5 | offval.2 |
. . . 4
| |
| 6 | offval.4 |
. . . 4
| |
| 7 | fnex 5860 |
. . . 4
| |
| 8 | 5, 6, 7 | syl2anc 411 |
. . 3
|
| 9 | dmeq 4922 |
. . . . . 6
| |
| 10 | dmeq 4922 |
. . . . . 6
| |
| 11 | 9, 10 | ineqan12d 3407 |
. . . . 5
|
| 12 | fveq1 5625 |
. . . . . 6
| |
| 13 | fveq1 5625 |
. . . . . 6
| |
| 14 | 12, 13 | breqan12d 4098 |
. . . . 5
|
| 15 | 11, 14 | raleqbidv 2744 |
. . . 4
|
| 16 | df-ofr 6217 |
. . . 4
| |
| 17 | 15, 16 | brabga 4351 |
. . 3
|
| 18 | 4, 8, 17 | syl2anc 411 |
. 2
|
| 19 | fndm 5419 |
. . . . . 6
| |
| 20 | 1, 19 | syl 14 |
. . . . 5
|
| 21 | fndm 5419 |
. . . . . 6
| |
| 22 | 5, 21 | syl 14 |
. . . . 5
|
| 23 | 20, 22 | ineq12d 3406 |
. . . 4
|
| 24 | offval.5 |
. . . 4
| |
| 25 | 23, 24 | eqtrdi 2278 |
. . 3
|
| 26 | 25 | raleqdv 2734 |
. 2
|
| 27 | inss1 3424 |
. . . . . . 7
| |
| 28 | 24, 27 | eqsstrri 3257 |
. . . . . 6
|
| 29 | 28 | sseli 3220 |
. . . . 5
|
| 30 | offval.6 |
. . . . 5
| |
| 31 | 29, 30 | sylan2 286 |
. . . 4
|
| 32 | inss2 3425 |
. . . . . . 7
| |
| 33 | 24, 32 | eqsstrri 3257 |
. . . . . 6
|
| 34 | 33 | sseli 3220 |
. . . . 5
|
| 35 | offval.7 |
. . . . 5
| |
| 36 | 34, 35 | sylan2 286 |
. . . 4
|
| 37 | 31, 36 | breq12d 4095 |
. . 3
|
| 38 | 37 | ralbidva 2526 |
. 2
|
| 39 | 18, 26, 38 | 3bitrd 214 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-ofr 6217 |
| This theorem is referenced by: ofrval 6227 ofrfval2 6233 caofref 6241 caofrss 6248 caoftrn 6249 |
| Copyright terms: Public domain | W3C validator |