| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvun1 | Unicode version | ||
| Description: The value of a union when the argument is in the first domain. (Contributed by Scott Fenton, 29-Jun-2013.) |
| Ref | Expression |
|---|---|
| fvun1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnfun 5417 |
. . 3
| |
| 2 | 1 | 3ad2ant1 1042 |
. 2
|
| 3 | fnfun 5417 |
. . 3
| |
| 4 | 3 | 3ad2ant2 1043 |
. 2
|
| 5 | fndm 5419 |
. . . . . . 7
| |
| 6 | fndm 5419 |
. . . . . . 7
| |
| 7 | 5, 6 | ineqan12d 3407 |
. . . . . 6
|
| 8 | 7 | eqeq1d 2238 |
. . . . 5
|
| 9 | 8 | biimprd 158 |
. . . 4
|
| 10 | 9 | adantrd 279 |
. . 3
|
| 11 | 10 | 3impia 1224 |
. 2
|
| 12 | simp3r 1050 |
. . 3
| |
| 13 | 5 | eleq2d 2299 |
. . . 4
|
| 14 | 13 | 3ad2ant1 1042 |
. . 3
|
| 15 | 12, 14 | mpbird 167 |
. 2
|
| 16 | funun 5361 |
. . . . . . 7
| |
| 17 | ssun1 3367 |
. . . . . . . . 9
| |
| 18 | dmss 4921 |
. . . . . . . . 9
| |
| 19 | 17, 18 | ax-mp 5 |
. . . . . . . 8
|
| 20 | 19 | sseli 3220 |
. . . . . . 7
|
| 21 | 16, 20 | anim12i 338 |
. . . . . 6
|
| 22 | 21 | anasss 399 |
. . . . 5
|
| 23 | 22 | 3impa 1218 |
. . . 4
|
| 24 | funfvdm 5696 |
. . . 4
| |
| 25 | 23, 24 | syl 14 |
. . 3
|
| 26 | imaundir 5141 |
. . . . . 6
| |
| 27 | 26 | a1i 9 |
. . . . 5
|
| 28 | 27 | unieqd 3898 |
. . . 4
|
| 29 | disjel 3546 |
. . . . . . . . 9
| |
| 30 | ndmima 5104 |
. . . . . . . . 9
| |
| 31 | 29, 30 | syl 14 |
. . . . . . . 8
|
| 32 | 31 | 3ad2ant3 1044 |
. . . . . . 7
|
| 33 | 32 | uneq2d 3358 |
. . . . . 6
|
| 34 | un0 3525 |
. . . . . 6
| |
| 35 | 33, 34 | eqtrdi 2278 |
. . . . 5
|
| 36 | 35 | unieqd 3898 |
. . . 4
|
| 37 | 28, 36 | eqtrd 2262 |
. . 3
|
| 38 | funfvdm 5696 |
. . . . . 6
| |
| 39 | 38 | eqcomd 2235 |
. . . . 5
|
| 40 | 39 | adantrl 478 |
. . . 4
|
| 41 | 40 | 3adant2 1040 |
. . 3
|
| 42 | 25, 37, 41 | 3eqtrd 2266 |
. 2
|
| 43 | 2, 4, 11, 15, 42 | syl112anc 1275 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-fv 5325 |
| This theorem is referenced by: fvun2 5700 caseinl 7254 |
| Copyright terms: Public domain | W3C validator |