Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fvun1 | Unicode version |
Description: The value of a union when the argument is in the first domain. (Contributed by Scott Fenton, 29-Jun-2013.) |
Ref | Expression |
---|---|
fvun1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnfun 5285 | . . 3 | |
2 | 1 | 3ad2ant1 1008 | . 2 |
3 | fnfun 5285 | . . 3 | |
4 | 3 | 3ad2ant2 1009 | . 2 |
5 | fndm 5287 | . . . . . . 7 | |
6 | fndm 5287 | . . . . . . 7 | |
7 | 5, 6 | ineqan12d 3325 | . . . . . 6 |
8 | 7 | eqeq1d 2174 | . . . . 5 |
9 | 8 | biimprd 157 | . . . 4 |
10 | 9 | adantrd 277 | . . 3 |
11 | 10 | 3impia 1190 | . 2 |
12 | simp3r 1016 | . . 3 | |
13 | 5 | eleq2d 2236 | . . . 4 |
14 | 13 | 3ad2ant1 1008 | . . 3 |
15 | 12, 14 | mpbird 166 | . 2 |
16 | funun 5232 | . . . . . . 7 | |
17 | ssun1 3285 | . . . . . . . . 9 | |
18 | dmss 4803 | . . . . . . . . 9 | |
19 | 17, 18 | ax-mp 5 | . . . . . . . 8 |
20 | 19 | sseli 3138 | . . . . . . 7 |
21 | 16, 20 | anim12i 336 | . . . . . 6 |
22 | 21 | anasss 397 | . . . . 5 |
23 | 22 | 3impa 1184 | . . . 4 |
24 | funfvdm 5549 | . . . 4 | |
25 | 23, 24 | syl 14 | . . 3 |
26 | imaundir 5017 | . . . . . 6 | |
27 | 26 | a1i 9 | . . . . 5 |
28 | 27 | unieqd 3800 | . . . 4 |
29 | disjel 3463 | . . . . . . . . 9 | |
30 | ndmima 4981 | . . . . . . . . 9 | |
31 | 29, 30 | syl 14 | . . . . . . . 8 |
32 | 31 | 3ad2ant3 1010 | . . . . . . 7 |
33 | 32 | uneq2d 3276 | . . . . . 6 |
34 | un0 3442 | . . . . . 6 | |
35 | 33, 34 | eqtrdi 2215 | . . . . 5 |
36 | 35 | unieqd 3800 | . . . 4 |
37 | 28, 36 | eqtrd 2198 | . . 3 |
38 | funfvdm 5549 | . . . . . 6 | |
39 | 38 | eqcomd 2171 | . . . . 5 |
40 | 39 | adantrl 470 | . . . 4 |
41 | 40 | 3adant2 1006 | . . 3 |
42 | 25, 37, 41 | 3eqtrd 2202 | . 2 |
43 | 2, 4, 11, 15, 42 | syl112anc 1232 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 w3a 968 wceq 1343 wcel 2136 cun 3114 cin 3115 wss 3116 c0 3409 csn 3576 cuni 3789 cdm 4604 cima 4607 wfun 5182 wfn 5183 cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-fv 5196 |
This theorem is referenced by: fvun2 5553 caseinl 7056 |
Copyright terms: Public domain | W3C validator |