ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvun1 Unicode version

Theorem fvun1 5480
Description: The value of a union when the argument is in the first domain. (Contributed by Scott Fenton, 29-Jun-2013.)
Assertion
Ref Expression
fvun1  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( ( A  i^i  B )  =  (/)  /\  X  e.  A ) )  -> 
( ( F  u.  G ) `  X
)  =  ( F `
 X ) )

Proof of Theorem fvun1
StepHypRef Expression
1 fnfun 5215 . . 3  |-  ( F  Fn  A  ->  Fun  F )
213ad2ant1 1002 . 2  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( ( A  i^i  B )  =  (/)  /\  X  e.  A ) )  ->  Fun  F )
3 fnfun 5215 . . 3  |-  ( G  Fn  B  ->  Fun  G )
433ad2ant2 1003 . 2  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( ( A  i^i  B )  =  (/)  /\  X  e.  A ) )  ->  Fun  G )
5 fndm 5217 . . . . . . 7  |-  ( F  Fn  A  ->  dom  F  =  A )
6 fndm 5217 . . . . . . 7  |-  ( G  Fn  B  ->  dom  G  =  B )
75, 6ineqan12d 3274 . . . . . 6  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( dom  F  i^i  dom 
G )  =  ( A  i^i  B ) )
87eqeq1d 2146 . . . . 5  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( ( dom  F  i^i  dom  G )  =  (/) 
<->  ( A  i^i  B
)  =  (/) ) )
98biimprd 157 . . . 4  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( ( A  i^i  B )  =  (/)  ->  ( dom  F  i^i  dom  G
)  =  (/) ) )
109adantrd 277 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( ( ( A  i^i  B )  =  (/)  /\  X  e.  A
)  ->  ( dom  F  i^i  dom  G )  =  (/) ) )
11103impia 1178 . 2  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( ( A  i^i  B )  =  (/)  /\  X  e.  A ) )  -> 
( dom  F  i^i  dom 
G )  =  (/) )
12 simp3r 1010 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( ( A  i^i  B )  =  (/)  /\  X  e.  A ) )  ->  X  e.  A )
135eleq2d 2207 . . . 4  |-  ( F  Fn  A  ->  ( X  e.  dom  F  <->  X  e.  A ) )
14133ad2ant1 1002 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( ( A  i^i  B )  =  (/)  /\  X  e.  A ) )  -> 
( X  e.  dom  F  <-> 
X  e.  A ) )
1512, 14mpbird 166 . 2  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( ( A  i^i  B )  =  (/)  /\  X  e.  A ) )  ->  X  e.  dom  F )
16 funun 5162 . . . . . . 7  |-  ( ( ( Fun  F  /\  Fun  G )  /\  ( dom  F  i^i  dom  G
)  =  (/) )  ->  Fun  ( F  u.  G
) )
17 ssun1 3234 . . . . . . . . 9  |-  F  C_  ( F  u.  G
)
18 dmss 4733 . . . . . . . . 9  |-  ( F 
C_  ( F  u.  G )  ->  dom  F 
C_  dom  ( F  u.  G ) )
1917, 18ax-mp 5 . . . . . . . 8  |-  dom  F  C_ 
dom  ( F  u.  G )
2019sseli 3088 . . . . . . 7  |-  ( X  e.  dom  F  ->  X  e.  dom  ( F  u.  G ) )
2116, 20anim12i 336 . . . . . 6  |-  ( ( ( ( Fun  F  /\  Fun  G )  /\  ( dom  F  i^i  dom  G )  =  (/) )  /\  X  e.  dom  F )  ->  ( Fun  ( F  u.  G )  /\  X  e.  dom  ( F  u.  G
) ) )
2221anasss 396 . . . . 5  |-  ( ( ( Fun  F  /\  Fun  G )  /\  (
( dom  F  i^i  dom 
G )  =  (/)  /\  X  e.  dom  F
) )  ->  ( Fun  ( F  u.  G
)  /\  X  e.  dom  ( F  u.  G
) ) )
23223impa 1176 . . . 4  |-  ( ( Fun  F  /\  Fun  G  /\  ( ( dom 
F  i^i  dom  G )  =  (/)  /\  X  e. 
dom  F ) )  ->  ( Fun  ( F  u.  G )  /\  X  e.  dom  ( F  u.  G
) ) )
24 funfvdm 5477 . . . 4  |-  ( ( Fun  ( F  u.  G )  /\  X  e.  dom  ( F  u.  G ) )  -> 
( ( F  u.  G ) `  X
)  =  U. (
( F  u.  G
) " { X } ) )
2523, 24syl 14 . . 3  |-  ( ( Fun  F  /\  Fun  G  /\  ( ( dom 
F  i^i  dom  G )  =  (/)  /\  X  e. 
dom  F ) )  ->  ( ( F  u.  G ) `  X )  =  U. ( ( F  u.  G ) " { X } ) )
26 imaundir 4947 . . . . . 6  |-  ( ( F  u.  G )
" { X }
)  =  ( ( F " { X } )  u.  ( G " { X }
) )
2726a1i 9 . . . . 5  |-  ( ( Fun  F  /\  Fun  G  /\  ( ( dom 
F  i^i  dom  G )  =  (/)  /\  X  e. 
dom  F ) )  ->  ( ( F  u.  G ) " { X } )  =  ( ( F " { X } )  u.  ( G " { X } ) ) )
2827unieqd 3742 . . . 4  |-  ( ( Fun  F  /\  Fun  G  /\  ( ( dom 
F  i^i  dom  G )  =  (/)  /\  X  e. 
dom  F ) )  ->  U. ( ( F  u.  G ) " { X } )  = 
U. ( ( F
" { X }
)  u.  ( G
" { X }
) ) )
29 disjel 3412 . . . . . . . . 9  |-  ( ( ( dom  F  i^i  dom 
G )  =  (/)  /\  X  e.  dom  F
)  ->  -.  X  e.  dom  G )
30 ndmima 4911 . . . . . . . . 9  |-  ( -.  X  e.  dom  G  ->  ( G " { X } )  =  (/) )
3129, 30syl 14 . . . . . . . 8  |-  ( ( ( dom  F  i^i  dom 
G )  =  (/)  /\  X  e.  dom  F
)  ->  ( G " { X } )  =  (/) )
32313ad2ant3 1004 . . . . . . 7  |-  ( ( Fun  F  /\  Fun  G  /\  ( ( dom 
F  i^i  dom  G )  =  (/)  /\  X  e. 
dom  F ) )  ->  ( G " { X } )  =  (/) )
3332uneq2d 3225 . . . . . 6  |-  ( ( Fun  F  /\  Fun  G  /\  ( ( dom 
F  i^i  dom  G )  =  (/)  /\  X  e. 
dom  F ) )  ->  ( ( F
" { X }
)  u.  ( G
" { X }
) )  =  ( ( F " { X } )  u.  (/) ) )
34 un0 3391 . . . . . 6  |-  ( ( F " { X } )  u.  (/) )  =  ( F " { X } )
3533, 34syl6eq 2186 . . . . 5  |-  ( ( Fun  F  /\  Fun  G  /\  ( ( dom 
F  i^i  dom  G )  =  (/)  /\  X  e. 
dom  F ) )  ->  ( ( F
" { X }
)  u.  ( G
" { X }
) )  =  ( F " { X } ) )
3635unieqd 3742 . . . 4  |-  ( ( Fun  F  /\  Fun  G  /\  ( ( dom 
F  i^i  dom  G )  =  (/)  /\  X  e. 
dom  F ) )  ->  U. ( ( F
" { X }
)  u.  ( G
" { X }
) )  =  U. ( F " { X } ) )
3728, 36eqtrd 2170 . . 3  |-  ( ( Fun  F  /\  Fun  G  /\  ( ( dom 
F  i^i  dom  G )  =  (/)  /\  X  e. 
dom  F ) )  ->  U. ( ( F  u.  G ) " { X } )  = 
U. ( F " { X } ) )
38 funfvdm 5477 . . . . . 6  |-  ( ( Fun  F  /\  X  e.  dom  F )  -> 
( F `  X
)  =  U. ( F " { X }
) )
3938eqcomd 2143 . . . . 5  |-  ( ( Fun  F  /\  X  e.  dom  F )  ->  U. ( F " { X } )  =  ( F `  X ) )
4039adantrl 469 . . . 4  |-  ( ( Fun  F  /\  (
( dom  F  i^i  dom 
G )  =  (/)  /\  X  e.  dom  F
) )  ->  U. ( F " { X }
)  =  ( F `
 X ) )
41403adant2 1000 . . 3  |-  ( ( Fun  F  /\  Fun  G  /\  ( ( dom 
F  i^i  dom  G )  =  (/)  /\  X  e. 
dom  F ) )  ->  U. ( F " { X } )  =  ( F `  X
) )
4225, 37, 413eqtrd 2174 . 2  |-  ( ( Fun  F  /\  Fun  G  /\  ( ( dom 
F  i^i  dom  G )  =  (/)  /\  X  e. 
dom  F ) )  ->  ( ( F  u.  G ) `  X )  =  ( F `  X ) )
432, 4, 11, 15, 42syl112anc 1220 1  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( ( A  i^i  B )  =  (/)  /\  X  e.  A ) )  -> 
( ( F  u.  G ) `  X
)  =  ( F `
 X ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    = wceq 1331    e. wcel 1480    u. cun 3064    i^i cin 3065    C_ wss 3066   (/)c0 3358   {csn 3522   U.cuni 3731   dom cdm 4534   "cima 4537   Fun wfun 5112    Fn wfn 5113   ` cfv 5118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-fv 5126
This theorem is referenced by:  fvun2  5481  caseinl  6969
  Copyright terms: Public domain W3C validator