| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvun1 | Unicode version | ||
| Description: The value of a union when the argument is in the first domain. (Contributed by Scott Fenton, 29-Jun-2013.) |
| Ref | Expression |
|---|---|
| fvun1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnfun 5380 |
. . 3
| |
| 2 | 1 | 3ad2ant1 1021 |
. 2
|
| 3 | fnfun 5380 |
. . 3
| |
| 4 | 3 | 3ad2ant2 1022 |
. 2
|
| 5 | fndm 5382 |
. . . . . . 7
| |
| 6 | fndm 5382 |
. . . . . . 7
| |
| 7 | 5, 6 | ineqan12d 3380 |
. . . . . 6
|
| 8 | 7 | eqeq1d 2215 |
. . . . 5
|
| 9 | 8 | biimprd 158 |
. . . 4
|
| 10 | 9 | adantrd 279 |
. . 3
|
| 11 | 10 | 3impia 1203 |
. 2
|
| 12 | simp3r 1029 |
. . 3
| |
| 13 | 5 | eleq2d 2276 |
. . . 4
|
| 14 | 13 | 3ad2ant1 1021 |
. . 3
|
| 15 | 12, 14 | mpbird 167 |
. 2
|
| 16 | funun 5324 |
. . . . . . 7
| |
| 17 | ssun1 3340 |
. . . . . . . . 9
| |
| 18 | dmss 4886 |
. . . . . . . . 9
| |
| 19 | 17, 18 | ax-mp 5 |
. . . . . . . 8
|
| 20 | 19 | sseli 3193 |
. . . . . . 7
|
| 21 | 16, 20 | anim12i 338 |
. . . . . 6
|
| 22 | 21 | anasss 399 |
. . . . 5
|
| 23 | 22 | 3impa 1197 |
. . . 4
|
| 24 | funfvdm 5655 |
. . . 4
| |
| 25 | 23, 24 | syl 14 |
. . 3
|
| 26 | imaundir 5105 |
. . . . . 6
| |
| 27 | 26 | a1i 9 |
. . . . 5
|
| 28 | 27 | unieqd 3867 |
. . . 4
|
| 29 | disjel 3519 |
. . . . . . . . 9
| |
| 30 | ndmima 5068 |
. . . . . . . . 9
| |
| 31 | 29, 30 | syl 14 |
. . . . . . . 8
|
| 32 | 31 | 3ad2ant3 1023 |
. . . . . . 7
|
| 33 | 32 | uneq2d 3331 |
. . . . . 6
|
| 34 | un0 3498 |
. . . . . 6
| |
| 35 | 33, 34 | eqtrdi 2255 |
. . . . 5
|
| 36 | 35 | unieqd 3867 |
. . . 4
|
| 37 | 28, 36 | eqtrd 2239 |
. . 3
|
| 38 | funfvdm 5655 |
. . . . . 6
| |
| 39 | 38 | eqcomd 2212 |
. . . . 5
|
| 40 | 39 | adantrl 478 |
. . . 4
|
| 41 | 40 | 3adant2 1019 |
. . 3
|
| 42 | 25, 37, 41 | 3eqtrd 2243 |
. 2
|
| 43 | 2, 4, 11, 15, 42 | syl112anc 1254 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-fv 5288 |
| This theorem is referenced by: fvun2 5659 caseinl 7208 |
| Copyright terms: Public domain | W3C validator |