| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvun1 | Unicode version | ||
| Description: The value of a union when the argument is in the first domain. (Contributed by Scott Fenton, 29-Jun-2013.) |
| Ref | Expression |
|---|---|
| fvun1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnfun 5365 |
. . 3
| |
| 2 | 1 | 3ad2ant1 1020 |
. 2
|
| 3 | fnfun 5365 |
. . 3
| |
| 4 | 3 | 3ad2ant2 1021 |
. 2
|
| 5 | fndm 5367 |
. . . . . . 7
| |
| 6 | fndm 5367 |
. . . . . . 7
| |
| 7 | 5, 6 | ineqan12d 3375 |
. . . . . 6
|
| 8 | 7 | eqeq1d 2213 |
. . . . 5
|
| 9 | 8 | biimprd 158 |
. . . 4
|
| 10 | 9 | adantrd 279 |
. . 3
|
| 11 | 10 | 3impia 1202 |
. 2
|
| 12 | simp3r 1028 |
. . 3
| |
| 13 | 5 | eleq2d 2274 |
. . . 4
|
| 14 | 13 | 3ad2ant1 1020 |
. . 3
|
| 15 | 12, 14 | mpbird 167 |
. 2
|
| 16 | funun 5312 |
. . . . . . 7
| |
| 17 | ssun1 3335 |
. . . . . . . . 9
| |
| 18 | dmss 4875 |
. . . . . . . . 9
| |
| 19 | 17, 18 | ax-mp 5 |
. . . . . . . 8
|
| 20 | 19 | sseli 3188 |
. . . . . . 7
|
| 21 | 16, 20 | anim12i 338 |
. . . . . 6
|
| 22 | 21 | anasss 399 |
. . . . 5
|
| 23 | 22 | 3impa 1196 |
. . . 4
|
| 24 | funfvdm 5636 |
. . . 4
| |
| 25 | 23, 24 | syl 14 |
. . 3
|
| 26 | imaundir 5093 |
. . . . . 6
| |
| 27 | 26 | a1i 9 |
. . . . 5
|
| 28 | 27 | unieqd 3860 |
. . . 4
|
| 29 | disjel 3514 |
. . . . . . . . 9
| |
| 30 | ndmima 5056 |
. . . . . . . . 9
| |
| 31 | 29, 30 | syl 14 |
. . . . . . . 8
|
| 32 | 31 | 3ad2ant3 1022 |
. . . . . . 7
|
| 33 | 32 | uneq2d 3326 |
. . . . . 6
|
| 34 | un0 3493 |
. . . . . 6
| |
| 35 | 33, 34 | eqtrdi 2253 |
. . . . 5
|
| 36 | 35 | unieqd 3860 |
. . . 4
|
| 37 | 28, 36 | eqtrd 2237 |
. . 3
|
| 38 | funfvdm 5636 |
. . . . . 6
| |
| 39 | 38 | eqcomd 2210 |
. . . . 5
|
| 40 | 39 | adantrl 478 |
. . . 4
|
| 41 | 40 | 3adant2 1018 |
. . 3
|
| 42 | 25, 37, 41 | 3eqtrd 2241 |
. 2
|
| 43 | 2, 4, 11, 15, 42 | syl112anc 1253 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-fv 5276 |
| This theorem is referenced by: fvun2 5640 caseinl 7175 |
| Copyright terms: Public domain | W3C validator |