ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvun1 Unicode version

Theorem fvun1 5495
Description: The value of a union when the argument is in the first domain. (Contributed by Scott Fenton, 29-Jun-2013.)
Assertion
Ref Expression
fvun1  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( ( A  i^i  B )  =  (/)  /\  X  e.  A ) )  -> 
( ( F  u.  G ) `  X
)  =  ( F `
 X ) )

Proof of Theorem fvun1
StepHypRef Expression
1 fnfun 5228 . . 3  |-  ( F  Fn  A  ->  Fun  F )
213ad2ant1 1003 . 2  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( ( A  i^i  B )  =  (/)  /\  X  e.  A ) )  ->  Fun  F )
3 fnfun 5228 . . 3  |-  ( G  Fn  B  ->  Fun  G )
433ad2ant2 1004 . 2  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( ( A  i^i  B )  =  (/)  /\  X  e.  A ) )  ->  Fun  G )
5 fndm 5230 . . . . . . 7  |-  ( F  Fn  A  ->  dom  F  =  A )
6 fndm 5230 . . . . . . 7  |-  ( G  Fn  B  ->  dom  G  =  B )
75, 6ineqan12d 3284 . . . . . 6  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( dom  F  i^i  dom 
G )  =  ( A  i^i  B ) )
87eqeq1d 2149 . . . . 5  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( ( dom  F  i^i  dom  G )  =  (/) 
<->  ( A  i^i  B
)  =  (/) ) )
98biimprd 157 . . . 4  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( ( A  i^i  B )  =  (/)  ->  ( dom  F  i^i  dom  G
)  =  (/) ) )
109adantrd 277 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( ( ( A  i^i  B )  =  (/)  /\  X  e.  A
)  ->  ( dom  F  i^i  dom  G )  =  (/) ) )
11103impia 1179 . 2  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( ( A  i^i  B )  =  (/)  /\  X  e.  A ) )  -> 
( dom  F  i^i  dom 
G )  =  (/) )
12 simp3r 1011 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( ( A  i^i  B )  =  (/)  /\  X  e.  A ) )  ->  X  e.  A )
135eleq2d 2210 . . . 4  |-  ( F  Fn  A  ->  ( X  e.  dom  F  <->  X  e.  A ) )
14133ad2ant1 1003 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( ( A  i^i  B )  =  (/)  /\  X  e.  A ) )  -> 
( X  e.  dom  F  <-> 
X  e.  A ) )
1512, 14mpbird 166 . 2  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( ( A  i^i  B )  =  (/)  /\  X  e.  A ) )  ->  X  e.  dom  F )
16 funun 5175 . . . . . . 7  |-  ( ( ( Fun  F  /\  Fun  G )  /\  ( dom  F  i^i  dom  G
)  =  (/) )  ->  Fun  ( F  u.  G
) )
17 ssun1 3244 . . . . . . . . 9  |-  F  C_  ( F  u.  G
)
18 dmss 4746 . . . . . . . . 9  |-  ( F 
C_  ( F  u.  G )  ->  dom  F 
C_  dom  ( F  u.  G ) )
1917, 18ax-mp 5 . . . . . . . 8  |-  dom  F  C_ 
dom  ( F  u.  G )
2019sseli 3098 . . . . . . 7  |-  ( X  e.  dom  F  ->  X  e.  dom  ( F  u.  G ) )
2116, 20anim12i 336 . . . . . 6  |-  ( ( ( ( Fun  F  /\  Fun  G )  /\  ( dom  F  i^i  dom  G )  =  (/) )  /\  X  e.  dom  F )  ->  ( Fun  ( F  u.  G )  /\  X  e.  dom  ( F  u.  G
) ) )
2221anasss 397 . . . . 5  |-  ( ( ( Fun  F  /\  Fun  G )  /\  (
( dom  F  i^i  dom 
G )  =  (/)  /\  X  e.  dom  F
) )  ->  ( Fun  ( F  u.  G
)  /\  X  e.  dom  ( F  u.  G
) ) )
23223impa 1177 . . . 4  |-  ( ( Fun  F  /\  Fun  G  /\  ( ( dom 
F  i^i  dom  G )  =  (/)  /\  X  e. 
dom  F ) )  ->  ( Fun  ( F  u.  G )  /\  X  e.  dom  ( F  u.  G
) ) )
24 funfvdm 5492 . . . 4  |-  ( ( Fun  ( F  u.  G )  /\  X  e.  dom  ( F  u.  G ) )  -> 
( ( F  u.  G ) `  X
)  =  U. (
( F  u.  G
) " { X } ) )
2523, 24syl 14 . . 3  |-  ( ( Fun  F  /\  Fun  G  /\  ( ( dom 
F  i^i  dom  G )  =  (/)  /\  X  e. 
dom  F ) )  ->  ( ( F  u.  G ) `  X )  =  U. ( ( F  u.  G ) " { X } ) )
26 imaundir 4960 . . . . . 6  |-  ( ( F  u.  G )
" { X }
)  =  ( ( F " { X } )  u.  ( G " { X }
) )
2726a1i 9 . . . . 5  |-  ( ( Fun  F  /\  Fun  G  /\  ( ( dom 
F  i^i  dom  G )  =  (/)  /\  X  e. 
dom  F ) )  ->  ( ( F  u.  G ) " { X } )  =  ( ( F " { X } )  u.  ( G " { X } ) ) )
2827unieqd 3755 . . . 4  |-  ( ( Fun  F  /\  Fun  G  /\  ( ( dom 
F  i^i  dom  G )  =  (/)  /\  X  e. 
dom  F ) )  ->  U. ( ( F  u.  G ) " { X } )  = 
U. ( ( F
" { X }
)  u.  ( G
" { X }
) ) )
29 disjel 3422 . . . . . . . . 9  |-  ( ( ( dom  F  i^i  dom 
G )  =  (/)  /\  X  e.  dom  F
)  ->  -.  X  e.  dom  G )
30 ndmima 4924 . . . . . . . . 9  |-  ( -.  X  e.  dom  G  ->  ( G " { X } )  =  (/) )
3129, 30syl 14 . . . . . . . 8  |-  ( ( ( dom  F  i^i  dom 
G )  =  (/)  /\  X  e.  dom  F
)  ->  ( G " { X } )  =  (/) )
32313ad2ant3 1005 . . . . . . 7  |-  ( ( Fun  F  /\  Fun  G  /\  ( ( dom 
F  i^i  dom  G )  =  (/)  /\  X  e. 
dom  F ) )  ->  ( G " { X } )  =  (/) )
3332uneq2d 3235 . . . . . 6  |-  ( ( Fun  F  /\  Fun  G  /\  ( ( dom 
F  i^i  dom  G )  =  (/)  /\  X  e. 
dom  F ) )  ->  ( ( F
" { X }
)  u.  ( G
" { X }
) )  =  ( ( F " { X } )  u.  (/) ) )
34 un0 3401 . . . . . 6  |-  ( ( F " { X } )  u.  (/) )  =  ( F " { X } )
3533, 34eqtrdi 2189 . . . . 5  |-  ( ( Fun  F  /\  Fun  G  /\  ( ( dom 
F  i^i  dom  G )  =  (/)  /\  X  e. 
dom  F ) )  ->  ( ( F
" { X }
)  u.  ( G
" { X }
) )  =  ( F " { X } ) )
3635unieqd 3755 . . . 4  |-  ( ( Fun  F  /\  Fun  G  /\  ( ( dom 
F  i^i  dom  G )  =  (/)  /\  X  e. 
dom  F ) )  ->  U. ( ( F
" { X }
)  u.  ( G
" { X }
) )  =  U. ( F " { X } ) )
3728, 36eqtrd 2173 . . 3  |-  ( ( Fun  F  /\  Fun  G  /\  ( ( dom 
F  i^i  dom  G )  =  (/)  /\  X  e. 
dom  F ) )  ->  U. ( ( F  u.  G ) " { X } )  = 
U. ( F " { X } ) )
38 funfvdm 5492 . . . . . 6  |-  ( ( Fun  F  /\  X  e.  dom  F )  -> 
( F `  X
)  =  U. ( F " { X }
) )
3938eqcomd 2146 . . . . 5  |-  ( ( Fun  F  /\  X  e.  dom  F )  ->  U. ( F " { X } )  =  ( F `  X ) )
4039adantrl 470 . . . 4  |-  ( ( Fun  F  /\  (
( dom  F  i^i  dom 
G )  =  (/)  /\  X  e.  dom  F
) )  ->  U. ( F " { X }
)  =  ( F `
 X ) )
41403adant2 1001 . . 3  |-  ( ( Fun  F  /\  Fun  G  /\  ( ( dom 
F  i^i  dom  G )  =  (/)  /\  X  e. 
dom  F ) )  ->  U. ( F " { X } )  =  ( F `  X
) )
4225, 37, 413eqtrd 2177 . 2  |-  ( ( Fun  F  /\  Fun  G  /\  ( ( dom 
F  i^i  dom  G )  =  (/)  /\  X  e. 
dom  F ) )  ->  ( ( F  u.  G ) `  X )  =  ( F `  X ) )
432, 4, 11, 15, 42syl112anc 1221 1  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( ( A  i^i  B )  =  (/)  /\  X  e.  A ) )  -> 
( ( F  u.  G ) `  X
)  =  ( F `
 X ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 963    = wceq 1332    e. wcel 1481    u. cun 3074    i^i cin 3075    C_ wss 3076   (/)c0 3368   {csn 3532   U.cuni 3744   dom cdm 4547   "cima 4550   Fun wfun 5125    Fn wfn 5126   ` cfv 5131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-fv 5139
This theorem is referenced by:  fvun2  5496  caseinl  6984
  Copyright terms: Public domain W3C validator