| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > fvun1 | Unicode version | ||
| Description: The value of a union when the argument is in the first domain. (Contributed by Scott Fenton, 29-Jun-2013.) | 
| Ref | Expression | 
|---|---|
| fvun1 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fnfun 5355 | 
. . 3
 | |
| 2 | 1 | 3ad2ant1 1020 | 
. 2
 | 
| 3 | fnfun 5355 | 
. . 3
 | |
| 4 | 3 | 3ad2ant2 1021 | 
. 2
 | 
| 5 | fndm 5357 | 
. . . . . . 7
 | |
| 6 | fndm 5357 | 
. . . . . . 7
 | |
| 7 | 5, 6 | ineqan12d 3366 | 
. . . . . 6
 | 
| 8 | 7 | eqeq1d 2205 | 
. . . . 5
 | 
| 9 | 8 | biimprd 158 | 
. . . 4
 | 
| 10 | 9 | adantrd 279 | 
. . 3
 | 
| 11 | 10 | 3impia 1202 | 
. 2
 | 
| 12 | simp3r 1028 | 
. . 3
 | |
| 13 | 5 | eleq2d 2266 | 
. . . 4
 | 
| 14 | 13 | 3ad2ant1 1020 | 
. . 3
 | 
| 15 | 12, 14 | mpbird 167 | 
. 2
 | 
| 16 | funun 5302 | 
. . . . . . 7
 | |
| 17 | ssun1 3326 | 
. . . . . . . . 9
 | |
| 18 | dmss 4865 | 
. . . . . . . . 9
 | |
| 19 | 17, 18 | ax-mp 5 | 
. . . . . . . 8
 | 
| 20 | 19 | sseli 3179 | 
. . . . . . 7
 | 
| 21 | 16, 20 | anim12i 338 | 
. . . . . 6
 | 
| 22 | 21 | anasss 399 | 
. . . . 5
 | 
| 23 | 22 | 3impa 1196 | 
. . . 4
 | 
| 24 | funfvdm 5624 | 
. . . 4
 | |
| 25 | 23, 24 | syl 14 | 
. . 3
 | 
| 26 | imaundir 5083 | 
. . . . . 6
 | |
| 27 | 26 | a1i 9 | 
. . . . 5
 | 
| 28 | 27 | unieqd 3850 | 
. . . 4
 | 
| 29 | disjel 3505 | 
. . . . . . . . 9
 | |
| 30 | ndmima 5046 | 
. . . . . . . . 9
 | |
| 31 | 29, 30 | syl 14 | 
. . . . . . . 8
 | 
| 32 | 31 | 3ad2ant3 1022 | 
. . . . . . 7
 | 
| 33 | 32 | uneq2d 3317 | 
. . . . . 6
 | 
| 34 | un0 3484 | 
. . . . . 6
 | |
| 35 | 33, 34 | eqtrdi 2245 | 
. . . . 5
 | 
| 36 | 35 | unieqd 3850 | 
. . . 4
 | 
| 37 | 28, 36 | eqtrd 2229 | 
. . 3
 | 
| 38 | funfvdm 5624 | 
. . . . . 6
 | |
| 39 | 38 | eqcomd 2202 | 
. . . . 5
 | 
| 40 | 39 | adantrl 478 | 
. . . 4
 | 
| 41 | 40 | 3adant2 1018 | 
. . 3
 | 
| 42 | 25, 37, 41 | 3eqtrd 2233 | 
. 2
 | 
| 43 | 2, 4, 11, 15, 42 | syl112anc 1253 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 | 
| This theorem is referenced by: fvun2 5628 caseinl 7157 | 
| Copyright terms: Public domain | W3C validator |