| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ineq12d | Unicode version | ||
| Description: Equality deduction for intersection of two classes. (Contributed by NM, 24-Jun-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| ineq1d.1 |
|
| ineq12d.2 |
|
| Ref | Expression |
|---|---|
| ineq12d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1d.1 |
. 2
| |
| 2 | ineq12d.2 |
. 2
| |
| 3 | ineq12 3377 |
. 2
| |
| 4 | 1, 2, 3 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-in 3180 |
| This theorem is referenced by: csbing 3388 funprg 5343 funtpg 5344 offval 6189 ofrfval 6190 undifdc 7047 djudom 7221 isunitd 13983 dfrhm2 14031 isrhm 14035 rhmval 14050 2idlval 14379 2idlvalg 14380 |
| Copyright terms: Public domain | W3C validator |