ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfss1 Unicode version

Theorem dfss1 3408
Description: A frequently-used variant of subclass definition df-ss 3210. (Contributed by NM, 10-Jan-2015.)
Assertion
Ref Expression
dfss1  |-  ( A 
C_  B  <->  ( B  i^i  A )  =  A )

Proof of Theorem dfss1
StepHypRef Expression
1 df-ss 3210 . 2  |-  ( A 
C_  B  <->  ( A  i^i  B )  =  A )
2 incom 3396 . . 3  |-  ( A  i^i  B )  =  ( B  i^i  A
)
32eqeq1i 2237 . 2  |-  ( ( A  i^i  B )  =  A  <->  ( B  i^i  A )  =  A )
41, 3bitri 184 1  |-  ( A 
C_  B  <->  ( B  i^i  A )  =  A )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1395    i^i cin 3196    C_ wss 3197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-in 3203  df-ss 3210
This theorem is referenced by:  dfss5  3409  sseqin2  3423  onintexmid  4665  xpimasn  5177  fndmdif  5740  infiexmid  7039  ssfidc  7099  isumss  11902  znnen  12969  2omap  16359  pw1map  16361
  Copyright terms: Public domain W3C validator