ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfss1 Unicode version

Theorem dfss1 3340
Description: A frequently-used variant of subclass definition df-ss 3143. (Contributed by NM, 10-Jan-2015.)
Assertion
Ref Expression
dfss1  |-  ( A 
C_  B  <->  ( B  i^i  A )  =  A )

Proof of Theorem dfss1
StepHypRef Expression
1 df-ss 3143 . 2  |-  ( A 
C_  B  <->  ( A  i^i  B )  =  A )
2 incom 3328 . . 3  |-  ( A  i^i  B )  =  ( B  i^i  A
)
32eqeq1i 2185 . 2  |-  ( ( A  i^i  B )  =  A  <->  ( B  i^i  A )  =  A )
41, 3bitri 184 1  |-  ( A 
C_  B  <->  ( B  i^i  A )  =  A )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1353    i^i cin 3129    C_ wss 3130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2740  df-in 3136  df-ss 3143
This theorem is referenced by:  dfss5  3341  sseqin2  3355  onintexmid  4573  xpimasn  5078  fndmdif  5622  infiexmid  6877  ssfidc  6934  isumss  11399  znnen  12399
  Copyright terms: Public domain W3C validator