ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iooinsup Unicode version

Theorem iooinsup 11788
Description: Intersection of two open intervals of extended reals. (Contributed by NM, 7-Feb-2007.) (Revised by Jim Kingdon, 22-May-2023.)
Assertion
Ref Expression
iooinsup  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )
)  ->  ( ( A (,) B )  i^i  ( C (,) D
) )  =  ( sup ( { A ,  C } ,  RR* ,  <  ) (,)inf ( { B ,  D } ,  RR* ,  <  )
) )

Proof of Theorem iooinsup
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 inrab 3476 . . 3  |-  ( { z  e.  RR*  |  ( A  <  z  /\  z  <  B ) }  i^i  { z  e. 
RR*  |  ( C  <  z  /\  z  < 
D ) } )  =  { z  e. 
RR*  |  ( ( A  <  z  /\  z  <  B )  /\  ( C  <  z  /\  z  <  D ) ) }
2 iooval 10104 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A (,) B )  =  { z  e.  RR*  |  ( A  <  z  /\  z  <  B ) } )
3 iooval 10104 . . . 4  |-  ( ( C  e.  RR*  /\  D  e.  RR* )  ->  ( C (,) D )  =  { z  e.  RR*  |  ( C  <  z  /\  z  <  D ) } )
42, 3ineqan12d 3407 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )
)  ->  ( ( A (,) B )  i^i  ( C (,) D
) )  =  ( { z  e.  RR*  |  ( A  <  z  /\  z  <  B ) }  i^i  { z  e.  RR*  |  ( C  <  z  /\  z  <  D ) } ) )
5 xrmaxltsup 11769 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  C  e.  RR*  /\  z  e. 
RR* )  ->  ( sup ( { A ,  C } ,  RR* ,  <  )  <  z  <->  ( A  <  z  /\  C  < 
z ) ) )
65ad4ant124 1240 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  C  e.  RR* )  /\  ( B  e.  RR*  /\  D  e. 
RR* ) )  /\  z  e.  RR* )  -> 
( sup ( { A ,  C } ,  RR* ,  <  )  <  z  <->  ( A  < 
z  /\  C  <  z ) ) )
7 xrltmininf 11781 . . . . . . . . . 10  |-  ( ( z  e.  RR*  /\  B  e.  RR*  /\  D  e. 
RR* )  ->  (
z  < inf ( { B ,  D } ,  RR* ,  <  )  <->  ( z  <  B  /\  z  <  D ) ) )
873expb 1228 . . . . . . . . 9  |-  ( ( z  e.  RR*  /\  ( B  e.  RR*  /\  D  e.  RR* ) )  -> 
( z  < inf ( { B ,  D } ,  RR* ,  <  )  <->  ( z  <  B  /\  z  <  D ) ) )
98ancoms 268 . . . . . . . 8  |-  ( ( ( B  e.  RR*  /\  D  e.  RR* )  /\  z  e.  RR* )  ->  ( z  < inf ( { B ,  D } ,  RR* ,  <  )  <->  ( z  <  B  /\  z  <  D ) ) )
109adantll 476 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  C  e.  RR* )  /\  ( B  e.  RR*  /\  D  e. 
RR* ) )  /\  z  e.  RR* )  -> 
( z  < inf ( { B ,  D } ,  RR* ,  <  )  <->  ( z  <  B  /\  z  <  D ) ) )
116, 10anbi12d 473 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  C  e.  RR* )  /\  ( B  e.  RR*  /\  D  e. 
RR* ) )  /\  z  e.  RR* )  -> 
( ( sup ( { A ,  C } ,  RR* ,  <  )  <  z  /\  z  < inf ( { B ,  D } ,  RR* ,  <  ) )  <->  ( ( A  <  z  /\  C  <  z )  /\  (
z  <  B  /\  z  <  D ) ) ) )
12 an4 586 . . . . . 6  |-  ( ( ( A  <  z  /\  z  <  B )  /\  ( C  < 
z  /\  z  <  D ) )  <->  ( ( A  <  z  /\  C  <  z )  /\  (
z  <  B  /\  z  <  D ) ) )
1311, 12bitr4di 198 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  C  e.  RR* )  /\  ( B  e.  RR*  /\  D  e. 
RR* ) )  /\  z  e.  RR* )  -> 
( ( sup ( { A ,  C } ,  RR* ,  <  )  <  z  /\  z  < inf ( { B ,  D } ,  RR* ,  <  ) )  <->  ( ( A  <  z  /\  z  <  B )  /\  ( C  <  z  /\  z  <  D ) ) ) )
1413rabbidva 2787 . . . 4  |-  ( ( ( A  e.  RR*  /\  C  e.  RR* )  /\  ( B  e.  RR*  /\  D  e.  RR* )
)  ->  { z  e.  RR*  |  ( sup ( { A ,  C } ,  RR* ,  <  )  <  z  /\  z  < inf ( { B ,  D } ,  RR* ,  <  ) ) }  =  {
z  e.  RR*  |  ( ( A  <  z  /\  z  <  B )  /\  ( C  < 
z  /\  z  <  D ) ) } )
1514an4s 590 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )
)  ->  { z  e.  RR*  |  ( sup ( { A ,  C } ,  RR* ,  <  )  <  z  /\  z  < inf ( { B ,  D } ,  RR* ,  <  ) ) }  =  {
z  e.  RR*  |  ( ( A  <  z  /\  z  <  B )  /\  ( C  < 
z  /\  z  <  D ) ) } )
161, 4, 153eqtr4a 2288 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )
)  ->  ( ( A (,) B )  i^i  ( C (,) D
) )  =  {
z  e.  RR*  |  ( sup ( { A ,  C } ,  RR* ,  <  )  <  z  /\  z  < inf ( { B ,  D } ,  RR* ,  <  )
) } )
17 xrmaxcl 11763 . . . 4  |-  ( ( A  e.  RR*  /\  C  e.  RR* )  ->  sup ( { A ,  C } ,  RR* ,  <  )  e.  RR* )
18 xrmincl 11777 . . . 4  |-  ( ( B  e.  RR*  /\  D  e.  RR* )  -> inf ( { B ,  D } ,  RR* ,  <  )  e.  RR* )
19 iooval 10104 . . . 4  |-  ( ( sup ( { A ,  C } ,  RR* ,  <  )  e.  RR*  /\ inf ( { B ,  D } ,  RR* ,  <  )  e.  RR* )  ->  ( sup ( { A ,  C } ,  RR* ,  <  ) (,)inf ( { B ,  D } ,  RR* ,  <  ) )  =  { z  e.  RR*  |  ( sup ( { A ,  C } ,  RR* ,  <  )  <  z  /\  z  < inf ( { B ,  D } ,  RR* ,  <  ) ) } )
2017, 18, 19syl2an 289 . . 3  |-  ( ( ( A  e.  RR*  /\  C  e.  RR* )  /\  ( B  e.  RR*  /\  D  e.  RR* )
)  ->  ( sup ( { A ,  C } ,  RR* ,  <  ) (,)inf ( { B ,  D } ,  RR* ,  <  ) )  =  { z  e.  RR*  |  ( sup ( { A ,  C } ,  RR* ,  <  )  <  z  /\  z  < inf ( { B ,  D } ,  RR* ,  <  ) ) } )
2120an4s 590 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )
)  ->  ( sup ( { A ,  C } ,  RR* ,  <  ) (,)inf ( { B ,  D } ,  RR* ,  <  ) )  =  { z  e.  RR*  |  ( sup ( { A ,  C } ,  RR* ,  <  )  <  z  /\  z  < inf ( { B ,  D } ,  RR* ,  <  ) ) } )
2216, 21eqtr4d 2265 1  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )
)  ->  ( ( A (,) B )  i^i  ( C (,) D
) )  =  ( sup ( { A ,  C } ,  RR* ,  <  ) (,)inf ( { B ,  D } ,  RR* ,  <  )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   {crab 2512    i^i cin 3196   {cpr 3667   class class class wbr 4083  (class class class)co 6001   supcsup 7149  infcinf 7150   RR*cxr 8180    < clt 8181   (,)cioo 10084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-sup 7151  df-inf 7152  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-rp 9850  df-xneg 9968  df-ioo 10088  df-seqfrec 10670  df-exp 10761  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510
This theorem is referenced by:  qtopbasss  15195  tgioo  15228
  Copyright terms: Public domain W3C validator