ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iooinsup Unicode version

Theorem iooinsup 11156
Description: Intersection of two open intervals of extended reals. (Contributed by NM, 7-Feb-2007.) (Revised by Jim Kingdon, 22-May-2023.)
Assertion
Ref Expression
iooinsup  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )
)  ->  ( ( A (,) B )  i^i  ( C (,) D
) )  =  ( sup ( { A ,  C } ,  RR* ,  <  ) (,)inf ( { B ,  D } ,  RR* ,  <  )
) )

Proof of Theorem iooinsup
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 inrab 3379 . . 3  |-  ( { z  e.  RR*  |  ( A  <  z  /\  z  <  B ) }  i^i  { z  e. 
RR*  |  ( C  <  z  /\  z  < 
D ) } )  =  { z  e. 
RR*  |  ( ( A  <  z  /\  z  <  B )  /\  ( C  <  z  /\  z  <  D ) ) }
2 iooval 9794 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A (,) B )  =  { z  e.  RR*  |  ( A  <  z  /\  z  <  B ) } )
3 iooval 9794 . . . 4  |-  ( ( C  e.  RR*  /\  D  e.  RR* )  ->  ( C (,) D )  =  { z  e.  RR*  |  ( C  <  z  /\  z  <  D ) } )
42, 3ineqan12d 3310 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )
)  ->  ( ( A (,) B )  i^i  ( C (,) D
) )  =  ( { z  e.  RR*  |  ( A  <  z  /\  z  <  B ) }  i^i  { z  e.  RR*  |  ( C  <  z  /\  z  <  D ) } ) )
5 xrmaxltsup 11137 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  C  e.  RR*  /\  z  e. 
RR* )  ->  ( sup ( { A ,  C } ,  RR* ,  <  )  <  z  <->  ( A  <  z  /\  C  < 
z ) ) )
65ad4ant124 1198 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  C  e.  RR* )  /\  ( B  e.  RR*  /\  D  e. 
RR* ) )  /\  z  e.  RR* )  -> 
( sup ( { A ,  C } ,  RR* ,  <  )  <  z  <->  ( A  < 
z  /\  C  <  z ) ) )
7 xrltmininf 11149 . . . . . . . . . 10  |-  ( ( z  e.  RR*  /\  B  e.  RR*  /\  D  e. 
RR* )  ->  (
z  < inf ( { B ,  D } ,  RR* ,  <  )  <->  ( z  <  B  /\  z  <  D ) ) )
873expb 1186 . . . . . . . . 9  |-  ( ( z  e.  RR*  /\  ( B  e.  RR*  /\  D  e.  RR* ) )  -> 
( z  < inf ( { B ,  D } ,  RR* ,  <  )  <->  ( z  <  B  /\  z  <  D ) ) )
98ancoms 266 . . . . . . . 8  |-  ( ( ( B  e.  RR*  /\  D  e.  RR* )  /\  z  e.  RR* )  ->  ( z  < inf ( { B ,  D } ,  RR* ,  <  )  <->  ( z  <  B  /\  z  <  D ) ) )
109adantll 468 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  C  e.  RR* )  /\  ( B  e.  RR*  /\  D  e. 
RR* ) )  /\  z  e.  RR* )  -> 
( z  < inf ( { B ,  D } ,  RR* ,  <  )  <->  ( z  <  B  /\  z  <  D ) ) )
116, 10anbi12d 465 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  C  e.  RR* )  /\  ( B  e.  RR*  /\  D  e. 
RR* ) )  /\  z  e.  RR* )  -> 
( ( sup ( { A ,  C } ,  RR* ,  <  )  <  z  /\  z  < inf ( { B ,  D } ,  RR* ,  <  ) )  <->  ( ( A  <  z  /\  C  <  z )  /\  (
z  <  B  /\  z  <  D ) ) ) )
12 an4 576 . . . . . 6  |-  ( ( ( A  <  z  /\  z  <  B )  /\  ( C  < 
z  /\  z  <  D ) )  <->  ( ( A  <  z  /\  C  <  z )  /\  (
z  <  B  /\  z  <  D ) ) )
1311, 12bitr4di 197 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  C  e.  RR* )  /\  ( B  e.  RR*  /\  D  e. 
RR* ) )  /\  z  e.  RR* )  -> 
( ( sup ( { A ,  C } ,  RR* ,  <  )  <  z  /\  z  < inf ( { B ,  D } ,  RR* ,  <  ) )  <->  ( ( A  <  z  /\  z  <  B )  /\  ( C  <  z  /\  z  <  D ) ) ) )
1413rabbidva 2700 . . . 4  |-  ( ( ( A  e.  RR*  /\  C  e.  RR* )  /\  ( B  e.  RR*  /\  D  e.  RR* )
)  ->  { z  e.  RR*  |  ( sup ( { A ,  C } ,  RR* ,  <  )  <  z  /\  z  < inf ( { B ,  D } ,  RR* ,  <  ) ) }  =  {
z  e.  RR*  |  ( ( A  <  z  /\  z  <  B )  /\  ( C  < 
z  /\  z  <  D ) ) } )
1514an4s 578 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )
)  ->  { z  e.  RR*  |  ( sup ( { A ,  C } ,  RR* ,  <  )  <  z  /\  z  < inf ( { B ,  D } ,  RR* ,  <  ) ) }  =  {
z  e.  RR*  |  ( ( A  <  z  /\  z  <  B )  /\  ( C  < 
z  /\  z  <  D ) ) } )
161, 4, 153eqtr4a 2216 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )
)  ->  ( ( A (,) B )  i^i  ( C (,) D
) )  =  {
z  e.  RR*  |  ( sup ( { A ,  C } ,  RR* ,  <  )  <  z  /\  z  < inf ( { B ,  D } ,  RR* ,  <  )
) } )
17 xrmaxcl 11131 . . . 4  |-  ( ( A  e.  RR*  /\  C  e.  RR* )  ->  sup ( { A ,  C } ,  RR* ,  <  )  e.  RR* )
18 xrmincl 11145 . . . 4  |-  ( ( B  e.  RR*  /\  D  e.  RR* )  -> inf ( { B ,  D } ,  RR* ,  <  )  e.  RR* )
19 iooval 9794 . . . 4  |-  ( ( sup ( { A ,  C } ,  RR* ,  <  )  e.  RR*  /\ inf ( { B ,  D } ,  RR* ,  <  )  e.  RR* )  ->  ( sup ( { A ,  C } ,  RR* ,  <  ) (,)inf ( { B ,  D } ,  RR* ,  <  ) )  =  { z  e.  RR*  |  ( sup ( { A ,  C } ,  RR* ,  <  )  <  z  /\  z  < inf ( { B ,  D } ,  RR* ,  <  ) ) } )
2017, 18, 19syl2an 287 . . 3  |-  ( ( ( A  e.  RR*  /\  C  e.  RR* )  /\  ( B  e.  RR*  /\  D  e.  RR* )
)  ->  ( sup ( { A ,  C } ,  RR* ,  <  ) (,)inf ( { B ,  D } ,  RR* ,  <  ) )  =  { z  e.  RR*  |  ( sup ( { A ,  C } ,  RR* ,  <  )  <  z  /\  z  < inf ( { B ,  D } ,  RR* ,  <  ) ) } )
2120an4s 578 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )
)  ->  ( sup ( { A ,  C } ,  RR* ,  <  ) (,)inf ( { B ,  D } ,  RR* ,  <  ) )  =  { z  e.  RR*  |  ( sup ( { A ,  C } ,  RR* ,  <  )  <  z  /\  z  < inf ( { B ,  D } ,  RR* ,  <  ) ) } )
2216, 21eqtr4d 2193 1  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )
)  ->  ( ( A (,) B )  i^i  ( C (,) D
) )  =  ( sup ( { A ,  C } ,  RR* ,  <  ) (,)inf ( { B ,  D } ,  RR* ,  <  )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1335    e. wcel 2128   {crab 2439    i^i cin 3101   {cpr 3561   class class class wbr 3965  (class class class)co 5818   supcsup 6918  infcinf 6919   RR*cxr 7894    < clt 7895   (,)cioo 9774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494  ax-iinf 4545  ax-cnex 7806  ax-resscn 7807  ax-1cn 7808  ax-1re 7809  ax-icn 7810  ax-addcl 7811  ax-addrcl 7812  ax-mulcl 7813  ax-mulrcl 7814  ax-addcom 7815  ax-mulcom 7816  ax-addass 7817  ax-mulass 7818  ax-distr 7819  ax-i2m1 7820  ax-0lt1 7821  ax-1rid 7822  ax-0id 7823  ax-rnegex 7824  ax-precex 7825  ax-cnre 7826  ax-pre-ltirr 7827  ax-pre-ltwlin 7828  ax-pre-lttrn 7829  ax-pre-apti 7830  ax-pre-ltadd 7831  ax-pre-mulgt0 7832  ax-pre-mulext 7833  ax-arch 7834  ax-caucvg 7835
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4252  df-po 4255  df-iso 4256  df-iord 4325  df-on 4327  df-ilim 4328  df-suc 4330  df-iom 4548  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-f1 5172  df-fo 5173  df-f1o 5174  df-fv 5175  df-isom 5176  df-riota 5774  df-ov 5821  df-oprab 5822  df-mpo 5823  df-1st 6082  df-2nd 6083  df-recs 6246  df-frec 6332  df-sup 6920  df-inf 6921  df-pnf 7897  df-mnf 7898  df-xr 7899  df-ltxr 7900  df-le 7901  df-sub 8031  df-neg 8032  df-reap 8433  df-ap 8440  df-div 8529  df-inn 8817  df-2 8875  df-3 8876  df-4 8877  df-n0 9074  df-z 9151  df-uz 9423  df-rp 9543  df-xneg 9661  df-ioo 9778  df-seqfrec 10327  df-exp 10401  df-cj 10724  df-re 10725  df-im 10726  df-rsqrt 10880  df-abs 10881
This theorem is referenced by:  qtopbasss  12881  tgioo  12906
  Copyright terms: Public domain W3C validator