ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iooinsup Unicode version

Theorem iooinsup 11461
Description: Intersection of two open intervals of extended reals. (Contributed by NM, 7-Feb-2007.) (Revised by Jim Kingdon, 22-May-2023.)
Assertion
Ref Expression
iooinsup  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )
)  ->  ( ( A (,) B )  i^i  ( C (,) D
) )  =  ( sup ( { A ,  C } ,  RR* ,  <  ) (,)inf ( { B ,  D } ,  RR* ,  <  )
) )

Proof of Theorem iooinsup
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 inrab 3436 . . 3  |-  ( { z  e.  RR*  |  ( A  <  z  /\  z  <  B ) }  i^i  { z  e. 
RR*  |  ( C  <  z  /\  z  < 
D ) } )  =  { z  e. 
RR*  |  ( ( A  <  z  /\  z  <  B )  /\  ( C  <  z  /\  z  <  D ) ) }
2 iooval 10002 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A (,) B )  =  { z  e.  RR*  |  ( A  <  z  /\  z  <  B ) } )
3 iooval 10002 . . . 4  |-  ( ( C  e.  RR*  /\  D  e.  RR* )  ->  ( C (,) D )  =  { z  e.  RR*  |  ( C  <  z  /\  z  <  D ) } )
42, 3ineqan12d 3367 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )
)  ->  ( ( A (,) B )  i^i  ( C (,) D
) )  =  ( { z  e.  RR*  |  ( A  <  z  /\  z  <  B ) }  i^i  { z  e.  RR*  |  ( C  <  z  /\  z  <  D ) } ) )
5 xrmaxltsup 11442 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  C  e.  RR*  /\  z  e. 
RR* )  ->  ( sup ( { A ,  C } ,  RR* ,  <  )  <  z  <->  ( A  <  z  /\  C  < 
z ) ) )
65ad4ant124 1218 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  C  e.  RR* )  /\  ( B  e.  RR*  /\  D  e. 
RR* ) )  /\  z  e.  RR* )  -> 
( sup ( { A ,  C } ,  RR* ,  <  )  <  z  <->  ( A  < 
z  /\  C  <  z ) ) )
7 xrltmininf 11454 . . . . . . . . . 10  |-  ( ( z  e.  RR*  /\  B  e.  RR*  /\  D  e. 
RR* )  ->  (
z  < inf ( { B ,  D } ,  RR* ,  <  )  <->  ( z  <  B  /\  z  <  D ) ) )
873expb 1206 . . . . . . . . 9  |-  ( ( z  e.  RR*  /\  ( B  e.  RR*  /\  D  e.  RR* ) )  -> 
( z  < inf ( { B ,  D } ,  RR* ,  <  )  <->  ( z  <  B  /\  z  <  D ) ) )
98ancoms 268 . . . . . . . 8  |-  ( ( ( B  e.  RR*  /\  D  e.  RR* )  /\  z  e.  RR* )  ->  ( z  < inf ( { B ,  D } ,  RR* ,  <  )  <->  ( z  <  B  /\  z  <  D ) ) )
109adantll 476 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  C  e.  RR* )  /\  ( B  e.  RR*  /\  D  e. 
RR* ) )  /\  z  e.  RR* )  -> 
( z  < inf ( { B ,  D } ,  RR* ,  <  )  <->  ( z  <  B  /\  z  <  D ) ) )
116, 10anbi12d 473 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  C  e.  RR* )  /\  ( B  e.  RR*  /\  D  e. 
RR* ) )  /\  z  e.  RR* )  -> 
( ( sup ( { A ,  C } ,  RR* ,  <  )  <  z  /\  z  < inf ( { B ,  D } ,  RR* ,  <  ) )  <->  ( ( A  <  z  /\  C  <  z )  /\  (
z  <  B  /\  z  <  D ) ) ) )
12 an4 586 . . . . . 6  |-  ( ( ( A  <  z  /\  z  <  B )  /\  ( C  < 
z  /\  z  <  D ) )  <->  ( ( A  <  z  /\  C  <  z )  /\  (
z  <  B  /\  z  <  D ) ) )
1311, 12bitr4di 198 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  C  e.  RR* )  /\  ( B  e.  RR*  /\  D  e. 
RR* ) )  /\  z  e.  RR* )  -> 
( ( sup ( { A ,  C } ,  RR* ,  <  )  <  z  /\  z  < inf ( { B ,  D } ,  RR* ,  <  ) )  <->  ( ( A  <  z  /\  z  <  B )  /\  ( C  <  z  /\  z  <  D ) ) ) )
1413rabbidva 2751 . . . 4  |-  ( ( ( A  e.  RR*  /\  C  e.  RR* )  /\  ( B  e.  RR*  /\  D  e.  RR* )
)  ->  { z  e.  RR*  |  ( sup ( { A ,  C } ,  RR* ,  <  )  <  z  /\  z  < inf ( { B ,  D } ,  RR* ,  <  ) ) }  =  {
z  e.  RR*  |  ( ( A  <  z  /\  z  <  B )  /\  ( C  < 
z  /\  z  <  D ) ) } )
1514an4s 588 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )
)  ->  { z  e.  RR*  |  ( sup ( { A ,  C } ,  RR* ,  <  )  <  z  /\  z  < inf ( { B ,  D } ,  RR* ,  <  ) ) }  =  {
z  e.  RR*  |  ( ( A  <  z  /\  z  <  B )  /\  ( C  < 
z  /\  z  <  D ) ) } )
161, 4, 153eqtr4a 2255 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )
)  ->  ( ( A (,) B )  i^i  ( C (,) D
) )  =  {
z  e.  RR*  |  ( sup ( { A ,  C } ,  RR* ,  <  )  <  z  /\  z  < inf ( { B ,  D } ,  RR* ,  <  )
) } )
17 xrmaxcl 11436 . . . 4  |-  ( ( A  e.  RR*  /\  C  e.  RR* )  ->  sup ( { A ,  C } ,  RR* ,  <  )  e.  RR* )
18 xrmincl 11450 . . . 4  |-  ( ( B  e.  RR*  /\  D  e.  RR* )  -> inf ( { B ,  D } ,  RR* ,  <  )  e.  RR* )
19 iooval 10002 . . . 4  |-  ( ( sup ( { A ,  C } ,  RR* ,  <  )  e.  RR*  /\ inf ( { B ,  D } ,  RR* ,  <  )  e.  RR* )  ->  ( sup ( { A ,  C } ,  RR* ,  <  ) (,)inf ( { B ,  D } ,  RR* ,  <  ) )  =  { z  e.  RR*  |  ( sup ( { A ,  C } ,  RR* ,  <  )  <  z  /\  z  < inf ( { B ,  D } ,  RR* ,  <  ) ) } )
2017, 18, 19syl2an 289 . . 3  |-  ( ( ( A  e.  RR*  /\  C  e.  RR* )  /\  ( B  e.  RR*  /\  D  e.  RR* )
)  ->  ( sup ( { A ,  C } ,  RR* ,  <  ) (,)inf ( { B ,  D } ,  RR* ,  <  ) )  =  { z  e.  RR*  |  ( sup ( { A ,  C } ,  RR* ,  <  )  <  z  /\  z  < inf ( { B ,  D } ,  RR* ,  <  ) ) } )
2120an4s 588 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )
)  ->  ( sup ( { A ,  C } ,  RR* ,  <  ) (,)inf ( { B ,  D } ,  RR* ,  <  ) )  =  { z  e.  RR*  |  ( sup ( { A ,  C } ,  RR* ,  <  )  <  z  /\  z  < inf ( { B ,  D } ,  RR* ,  <  ) ) } )
2216, 21eqtr4d 2232 1  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )
)  ->  ( ( A (,) B )  i^i  ( C (,) D
) )  =  ( sup ( { A ,  C } ,  RR* ,  <  ) (,)inf ( { B ,  D } ,  RR* ,  <  )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   {crab 2479    i^i cin 3156   {cpr 3624   class class class wbr 4034  (class class class)co 5925   supcsup 7057  infcinf 7058   RR*cxr 8079    < clt 8080   (,)cioo 9982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-sup 7059  df-inf 7060  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-n0 9269  df-z 9346  df-uz 9621  df-rp 9748  df-xneg 9866  df-ioo 9986  df-seqfrec 10559  df-exp 10650  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183
This theorem is referenced by:  qtopbasss  14865  tgioo  14898
  Copyright terms: Public domain W3C validator