ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iooinsup Unicode version

Theorem iooinsup 11442
Description: Intersection of two open intervals of extended reals. (Contributed by NM, 7-Feb-2007.) (Revised by Jim Kingdon, 22-May-2023.)
Assertion
Ref Expression
iooinsup  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )
)  ->  ( ( A (,) B )  i^i  ( C (,) D
) )  =  ( sup ( { A ,  C } ,  RR* ,  <  ) (,)inf ( { B ,  D } ,  RR* ,  <  )
) )

Proof of Theorem iooinsup
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 inrab 3435 . . 3  |-  ( { z  e.  RR*  |  ( A  <  z  /\  z  <  B ) }  i^i  { z  e. 
RR*  |  ( C  <  z  /\  z  < 
D ) } )  =  { z  e. 
RR*  |  ( ( A  <  z  /\  z  <  B )  /\  ( C  <  z  /\  z  <  D ) ) }
2 iooval 9983 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A (,) B )  =  { z  e.  RR*  |  ( A  <  z  /\  z  <  B ) } )
3 iooval 9983 . . . 4  |-  ( ( C  e.  RR*  /\  D  e.  RR* )  ->  ( C (,) D )  =  { z  e.  RR*  |  ( C  <  z  /\  z  <  D ) } )
42, 3ineqan12d 3366 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )
)  ->  ( ( A (,) B )  i^i  ( C (,) D
) )  =  ( { z  e.  RR*  |  ( A  <  z  /\  z  <  B ) }  i^i  { z  e.  RR*  |  ( C  <  z  /\  z  <  D ) } ) )
5 xrmaxltsup 11423 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  C  e.  RR*  /\  z  e. 
RR* )  ->  ( sup ( { A ,  C } ,  RR* ,  <  )  <  z  <->  ( A  <  z  /\  C  < 
z ) ) )
65ad4ant124 1218 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  C  e.  RR* )  /\  ( B  e.  RR*  /\  D  e. 
RR* ) )  /\  z  e.  RR* )  -> 
( sup ( { A ,  C } ,  RR* ,  <  )  <  z  <->  ( A  < 
z  /\  C  <  z ) ) )
7 xrltmininf 11435 . . . . . . . . . 10  |-  ( ( z  e.  RR*  /\  B  e.  RR*  /\  D  e. 
RR* )  ->  (
z  < inf ( { B ,  D } ,  RR* ,  <  )  <->  ( z  <  B  /\  z  <  D ) ) )
873expb 1206 . . . . . . . . 9  |-  ( ( z  e.  RR*  /\  ( B  e.  RR*  /\  D  e.  RR* ) )  -> 
( z  < inf ( { B ,  D } ,  RR* ,  <  )  <->  ( z  <  B  /\  z  <  D ) ) )
98ancoms 268 . . . . . . . 8  |-  ( ( ( B  e.  RR*  /\  D  e.  RR* )  /\  z  e.  RR* )  ->  ( z  < inf ( { B ,  D } ,  RR* ,  <  )  <->  ( z  <  B  /\  z  <  D ) ) )
109adantll 476 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  C  e.  RR* )  /\  ( B  e.  RR*  /\  D  e. 
RR* ) )  /\  z  e.  RR* )  -> 
( z  < inf ( { B ,  D } ,  RR* ,  <  )  <->  ( z  <  B  /\  z  <  D ) ) )
116, 10anbi12d 473 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  C  e.  RR* )  /\  ( B  e.  RR*  /\  D  e. 
RR* ) )  /\  z  e.  RR* )  -> 
( ( sup ( { A ,  C } ,  RR* ,  <  )  <  z  /\  z  < inf ( { B ,  D } ,  RR* ,  <  ) )  <->  ( ( A  <  z  /\  C  <  z )  /\  (
z  <  B  /\  z  <  D ) ) ) )
12 an4 586 . . . . . 6  |-  ( ( ( A  <  z  /\  z  <  B )  /\  ( C  < 
z  /\  z  <  D ) )  <->  ( ( A  <  z  /\  C  <  z )  /\  (
z  <  B  /\  z  <  D ) ) )
1311, 12bitr4di 198 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  C  e.  RR* )  /\  ( B  e.  RR*  /\  D  e. 
RR* ) )  /\  z  e.  RR* )  -> 
( ( sup ( { A ,  C } ,  RR* ,  <  )  <  z  /\  z  < inf ( { B ,  D } ,  RR* ,  <  ) )  <->  ( ( A  <  z  /\  z  <  B )  /\  ( C  <  z  /\  z  <  D ) ) ) )
1413rabbidva 2751 . . . 4  |-  ( ( ( A  e.  RR*  /\  C  e.  RR* )  /\  ( B  e.  RR*  /\  D  e.  RR* )
)  ->  { z  e.  RR*  |  ( sup ( { A ,  C } ,  RR* ,  <  )  <  z  /\  z  < inf ( { B ,  D } ,  RR* ,  <  ) ) }  =  {
z  e.  RR*  |  ( ( A  <  z  /\  z  <  B )  /\  ( C  < 
z  /\  z  <  D ) ) } )
1514an4s 588 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )
)  ->  { z  e.  RR*  |  ( sup ( { A ,  C } ,  RR* ,  <  )  <  z  /\  z  < inf ( { B ,  D } ,  RR* ,  <  ) ) }  =  {
z  e.  RR*  |  ( ( A  <  z  /\  z  <  B )  /\  ( C  < 
z  /\  z  <  D ) ) } )
161, 4, 153eqtr4a 2255 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )
)  ->  ( ( A (,) B )  i^i  ( C (,) D
) )  =  {
z  e.  RR*  |  ( sup ( { A ,  C } ,  RR* ,  <  )  <  z  /\  z  < inf ( { B ,  D } ,  RR* ,  <  )
) } )
17 xrmaxcl 11417 . . . 4  |-  ( ( A  e.  RR*  /\  C  e.  RR* )  ->  sup ( { A ,  C } ,  RR* ,  <  )  e.  RR* )
18 xrmincl 11431 . . . 4  |-  ( ( B  e.  RR*  /\  D  e.  RR* )  -> inf ( { B ,  D } ,  RR* ,  <  )  e.  RR* )
19 iooval 9983 . . . 4  |-  ( ( sup ( { A ,  C } ,  RR* ,  <  )  e.  RR*  /\ inf ( { B ,  D } ,  RR* ,  <  )  e.  RR* )  ->  ( sup ( { A ,  C } ,  RR* ,  <  ) (,)inf ( { B ,  D } ,  RR* ,  <  ) )  =  { z  e.  RR*  |  ( sup ( { A ,  C } ,  RR* ,  <  )  <  z  /\  z  < inf ( { B ,  D } ,  RR* ,  <  ) ) } )
2017, 18, 19syl2an 289 . . 3  |-  ( ( ( A  e.  RR*  /\  C  e.  RR* )  /\  ( B  e.  RR*  /\  D  e.  RR* )
)  ->  ( sup ( { A ,  C } ,  RR* ,  <  ) (,)inf ( { B ,  D } ,  RR* ,  <  ) )  =  { z  e.  RR*  |  ( sup ( { A ,  C } ,  RR* ,  <  )  <  z  /\  z  < inf ( { B ,  D } ,  RR* ,  <  ) ) } )
2120an4s 588 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )
)  ->  ( sup ( { A ,  C } ,  RR* ,  <  ) (,)inf ( { B ,  D } ,  RR* ,  <  ) )  =  { z  e.  RR*  |  ( sup ( { A ,  C } ,  RR* ,  <  )  <  z  /\  z  < inf ( { B ,  D } ,  RR* ,  <  ) ) } )
2216, 21eqtr4d 2232 1  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )
)  ->  ( ( A (,) B )  i^i  ( C (,) D
) )  =  ( sup ( { A ,  C } ,  RR* ,  <  ) (,)inf ( { B ,  D } ,  RR* ,  <  )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   {crab 2479    i^i cin 3156   {cpr 3623   class class class wbr 4033  (class class class)co 5922   supcsup 7048  infcinf 7049   RR*cxr 8060    < clt 8061   (,)cioo 9963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-rp 9729  df-xneg 9847  df-ioo 9967  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164
This theorem is referenced by:  qtopbasss  14757  tgioo  14790
  Copyright terms: Public domain W3C validator