ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tgdom Unicode version

Theorem tgdom 14308
Description: A space has no more open sets than subsets of a basis. (Contributed by Stefan O'Rear, 22-Feb-2015.) (Revised by Mario Carneiro, 9-Apr-2015.)
Assertion
Ref Expression
tgdom  |-  ( B  e.  V  ->  ( topGen `
 B )  ~<_  ~P B )

Proof of Theorem tgdom
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwexg 4213 . 2  |-  ( B  e.  V  ->  ~P B  e.  _V )
2 inss1 3383 . . . . 5  |-  ( B  i^i  ~P x ) 
C_  B
3 vpwex 4212 . . . . . . 7  |-  ~P x  e.  _V
43inex2 4168 . . . . . 6  |-  ( B  i^i  ~P x )  e.  _V
54elpw 3611 . . . . 5  |-  ( ( B  i^i  ~P x
)  e.  ~P B  <->  ( B  i^i  ~P x
)  C_  B )
62, 5mpbir 146 . . . 4  |-  ( B  i^i  ~P x )  e.  ~P B
76a1i 9 . . 3  |-  ( x  e.  ( topGen `  B
)  ->  ( B  i^i  ~P x )  e. 
~P B )
8 unieq 3848 . . . . . . 7  |-  ( ( B  i^i  ~P x
)  =  ( B  i^i  ~P y )  ->  U. ( B  i^i  ~P x )  =  U. ( B  i^i  ~P y
) )
98adantl 277 . . . . . 6  |-  ( ( ( x  e.  (
topGen `  B )  /\  y  e.  ( topGen `  B ) )  /\  ( B  i^i  ~P x
)  =  ( B  i^i  ~P y ) )  ->  U. ( B  i^i  ~P x )  =  U. ( B  i^i  ~P y ) )
10 eltg4i 14291 . . . . . . 7  |-  ( x  e.  ( topGen `  B
)  ->  x  =  U. ( B  i^i  ~P x ) )
1110ad2antrr 488 . . . . . 6  |-  ( ( ( x  e.  (
topGen `  B )  /\  y  e.  ( topGen `  B ) )  /\  ( B  i^i  ~P x
)  =  ( B  i^i  ~P y ) )  ->  x  =  U. ( B  i^i  ~P x ) )
12 eltg4i 14291 . . . . . . 7  |-  ( y  e.  ( topGen `  B
)  ->  y  =  U. ( B  i^i  ~P y ) )
1312ad2antlr 489 . . . . . 6  |-  ( ( ( x  e.  (
topGen `  B )  /\  y  e.  ( topGen `  B ) )  /\  ( B  i^i  ~P x
)  =  ( B  i^i  ~P y ) )  ->  y  =  U. ( B  i^i  ~P y ) )
149, 11, 133eqtr4d 2239 . . . . 5  |-  ( ( ( x  e.  (
topGen `  B )  /\  y  e.  ( topGen `  B ) )  /\  ( B  i^i  ~P x
)  =  ( B  i^i  ~P y ) )  ->  x  =  y )
1514ex 115 . . . 4  |-  ( ( x  e.  ( topGen `  B )  /\  y  e.  ( topGen `  B )
)  ->  ( ( B  i^i  ~P x )  =  ( B  i^i  ~P y )  ->  x  =  y ) )
16 pweq 3608 . . . . 5  |-  ( x  =  y  ->  ~P x  =  ~P y
)
1716ineq2d 3364 . . . 4  |-  ( x  =  y  ->  ( B  i^i  ~P x )  =  ( B  i^i  ~P y ) )
1815, 17impbid1 142 . . 3  |-  ( ( x  e.  ( topGen `  B )  /\  y  e.  ( topGen `  B )
)  ->  ( ( B  i^i  ~P x )  =  ( B  i^i  ~P y )  <->  x  =  y ) )
197, 18dom2 6834 . 2  |-  ( ~P B  e.  _V  ->  (
topGen `  B )  ~<_  ~P B )
201, 19syl 14 1  |-  ( B  e.  V  ->  ( topGen `
 B )  ~<_  ~P B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   _Vcvv 2763    i^i cin 3156    C_ wss 3157   ~Pcpw 3605   U.cuni 3839   class class class wbr 4033   ` cfv 5258    ~<_ cdom 6798   topGenctg 12925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-dom 6801  df-topgen 12931
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator