Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tgdom | Unicode version |
Description: A space has no more open sets than subsets of a basis. (Contributed by Stefan O'Rear, 22-Feb-2015.) (Revised by Mario Carneiro, 9-Apr-2015.) |
Ref | Expression |
---|---|
tgdom |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwexg 4159 | . 2 | |
2 | inss1 3342 | . . . . 5 | |
3 | vpwex 4158 | . . . . . . 7 | |
4 | 3 | inex2 4117 | . . . . . 6 |
5 | 4 | elpw 3565 | . . . . 5 |
6 | 2, 5 | mpbir 145 | . . . 4 |
7 | 6 | a1i 9 | . . 3 |
8 | unieq 3798 | . . . . . . 7 | |
9 | 8 | adantl 275 | . . . . . 6 |
10 | eltg4i 12705 | . . . . . . 7 | |
11 | 10 | ad2antrr 480 | . . . . . 6 |
12 | eltg4i 12705 | . . . . . . 7 | |
13 | 12 | ad2antlr 481 | . . . . . 6 |
14 | 9, 11, 13 | 3eqtr4d 2208 | . . . . 5 |
15 | 14 | ex 114 | . . . 4 |
16 | pweq 3562 | . . . . 5 | |
17 | 16 | ineq2d 3323 | . . . 4 |
18 | 15, 17 | impbid1 141 | . . 3 |
19 | 7, 18 | dom2 6741 | . 2 |
20 | 1, 19 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 cvv 2726 cin 3115 wss 3116 cpw 3559 cuni 3789 class class class wbr 3982 cfv 5188 cdom 6705 ctg 12571 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-dom 6708 df-topgen 12577 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |