ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tgdom Unicode version

Theorem tgdom 14659
Description: A space has no more open sets than subsets of a basis. (Contributed by Stefan O'Rear, 22-Feb-2015.) (Revised by Mario Carneiro, 9-Apr-2015.)
Assertion
Ref Expression
tgdom  |-  ( B  e.  V  ->  ( topGen `
 B )  ~<_  ~P B )

Proof of Theorem tgdom
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwexg 4240 . 2  |-  ( B  e.  V  ->  ~P B  e.  _V )
2 inss1 3401 . . . . 5  |-  ( B  i^i  ~P x ) 
C_  B
3 vpwex 4239 . . . . . . 7  |-  ~P x  e.  _V
43inex2 4195 . . . . . 6  |-  ( B  i^i  ~P x )  e.  _V
54elpw 3632 . . . . 5  |-  ( ( B  i^i  ~P x
)  e.  ~P B  <->  ( B  i^i  ~P x
)  C_  B )
62, 5mpbir 146 . . . 4  |-  ( B  i^i  ~P x )  e.  ~P B
76a1i 9 . . 3  |-  ( x  e.  ( topGen `  B
)  ->  ( B  i^i  ~P x )  e. 
~P B )
8 unieq 3873 . . . . . . 7  |-  ( ( B  i^i  ~P x
)  =  ( B  i^i  ~P y )  ->  U. ( B  i^i  ~P x )  =  U. ( B  i^i  ~P y
) )
98adantl 277 . . . . . 6  |-  ( ( ( x  e.  (
topGen `  B )  /\  y  e.  ( topGen `  B ) )  /\  ( B  i^i  ~P x
)  =  ( B  i^i  ~P y ) )  ->  U. ( B  i^i  ~P x )  =  U. ( B  i^i  ~P y ) )
10 eltg4i 14642 . . . . . . 7  |-  ( x  e.  ( topGen `  B
)  ->  x  =  U. ( B  i^i  ~P x ) )
1110ad2antrr 488 . . . . . 6  |-  ( ( ( x  e.  (
topGen `  B )  /\  y  e.  ( topGen `  B ) )  /\  ( B  i^i  ~P x
)  =  ( B  i^i  ~P y ) )  ->  x  =  U. ( B  i^i  ~P x ) )
12 eltg4i 14642 . . . . . . 7  |-  ( y  e.  ( topGen `  B
)  ->  y  =  U. ( B  i^i  ~P y ) )
1312ad2antlr 489 . . . . . 6  |-  ( ( ( x  e.  (
topGen `  B )  /\  y  e.  ( topGen `  B ) )  /\  ( B  i^i  ~P x
)  =  ( B  i^i  ~P y ) )  ->  y  =  U. ( B  i^i  ~P y ) )
149, 11, 133eqtr4d 2250 . . . . 5  |-  ( ( ( x  e.  (
topGen `  B )  /\  y  e.  ( topGen `  B ) )  /\  ( B  i^i  ~P x
)  =  ( B  i^i  ~P y ) )  ->  x  =  y )
1514ex 115 . . . 4  |-  ( ( x  e.  ( topGen `  B )  /\  y  e.  ( topGen `  B )
)  ->  ( ( B  i^i  ~P x )  =  ( B  i^i  ~P y )  ->  x  =  y ) )
16 pweq 3629 . . . . 5  |-  ( x  =  y  ->  ~P x  =  ~P y
)
1716ineq2d 3382 . . . 4  |-  ( x  =  y  ->  ( B  i^i  ~P x )  =  ( B  i^i  ~P y ) )
1815, 17impbid1 142 . . 3  |-  ( ( x  e.  ( topGen `  B )  /\  y  e.  ( topGen `  B )
)  ->  ( ( B  i^i  ~P x )  =  ( B  i^i  ~P y )  <->  x  =  y ) )
197, 18dom2 6889 . 2  |-  ( ~P B  e.  _V  ->  (
topGen `  B )  ~<_  ~P B )
201, 19syl 14 1  |-  ( B  e.  V  ->  ( topGen `
 B )  ~<_  ~P B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   _Vcvv 2776    i^i cin 3173    C_ wss 3174   ~Pcpw 3626   U.cuni 3864   class class class wbr 4059   ` cfv 5290    ~<_ cdom 6849   topGenctg 13201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-dom 6852  df-topgen 13207
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator