ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tgdom Unicode version

Theorem tgdom 12255
Description: A space has no more open sets than subsets of a basis. (Contributed by Stefan O'Rear, 22-Feb-2015.) (Revised by Mario Carneiro, 9-Apr-2015.)
Assertion
Ref Expression
tgdom  |-  ( B  e.  V  ->  ( topGen `
 B )  ~<_  ~P B )

Proof of Theorem tgdom
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwexg 4104 . 2  |-  ( B  e.  V  ->  ~P B  e.  _V )
2 inss1 3296 . . . . 5  |-  ( B  i^i  ~P x ) 
C_  B
3 vpwex 4103 . . . . . . 7  |-  ~P x  e.  _V
43inex2 4063 . . . . . 6  |-  ( B  i^i  ~P x )  e.  _V
54elpw 3516 . . . . 5  |-  ( ( B  i^i  ~P x
)  e.  ~P B  <->  ( B  i^i  ~P x
)  C_  B )
62, 5mpbir 145 . . . 4  |-  ( B  i^i  ~P x )  e.  ~P B
76a1i 9 . . 3  |-  ( x  e.  ( topGen `  B
)  ->  ( B  i^i  ~P x )  e. 
~P B )
8 unieq 3745 . . . . . . 7  |-  ( ( B  i^i  ~P x
)  =  ( B  i^i  ~P y )  ->  U. ( B  i^i  ~P x )  =  U. ( B  i^i  ~P y
) )
98adantl 275 . . . . . 6  |-  ( ( ( x  e.  (
topGen `  B )  /\  y  e.  ( topGen `  B ) )  /\  ( B  i^i  ~P x
)  =  ( B  i^i  ~P y ) )  ->  U. ( B  i^i  ~P x )  =  U. ( B  i^i  ~P y ) )
10 eltg4i 12238 . . . . . . 7  |-  ( x  e.  ( topGen `  B
)  ->  x  =  U. ( B  i^i  ~P x ) )
1110ad2antrr 479 . . . . . 6  |-  ( ( ( x  e.  (
topGen `  B )  /\  y  e.  ( topGen `  B ) )  /\  ( B  i^i  ~P x
)  =  ( B  i^i  ~P y ) )  ->  x  =  U. ( B  i^i  ~P x ) )
12 eltg4i 12238 . . . . . . 7  |-  ( y  e.  ( topGen `  B
)  ->  y  =  U. ( B  i^i  ~P y ) )
1312ad2antlr 480 . . . . . 6  |-  ( ( ( x  e.  (
topGen `  B )  /\  y  e.  ( topGen `  B ) )  /\  ( B  i^i  ~P x
)  =  ( B  i^i  ~P y ) )  ->  y  =  U. ( B  i^i  ~P y ) )
149, 11, 133eqtr4d 2182 . . . . 5  |-  ( ( ( x  e.  (
topGen `  B )  /\  y  e.  ( topGen `  B ) )  /\  ( B  i^i  ~P x
)  =  ( B  i^i  ~P y ) )  ->  x  =  y )
1514ex 114 . . . 4  |-  ( ( x  e.  ( topGen `  B )  /\  y  e.  ( topGen `  B )
)  ->  ( ( B  i^i  ~P x )  =  ( B  i^i  ~P y )  ->  x  =  y ) )
16 pweq 3513 . . . . 5  |-  ( x  =  y  ->  ~P x  =  ~P y
)
1716ineq2d 3277 . . . 4  |-  ( x  =  y  ->  ( B  i^i  ~P x )  =  ( B  i^i  ~P y ) )
1815, 17impbid1 141 . . 3  |-  ( ( x  e.  ( topGen `  B )  /\  y  e.  ( topGen `  B )
)  ->  ( ( B  i^i  ~P x )  =  ( B  i^i  ~P y )  <->  x  =  y ) )
197, 18dom2 6669 . 2  |-  ( ~P B  e.  _V  ->  (
topGen `  B )  ~<_  ~P B )
201, 19syl 14 1  |-  ( B  e.  V  ->  ( topGen `
 B )  ~<_  ~P B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   _Vcvv 2686    i^i cin 3070    C_ wss 3071   ~Pcpw 3510   U.cuni 3736   class class class wbr 3929   ` cfv 5123    ~<_ cdom 6633   topGenctg 12149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-dom 6636  df-topgen 12155
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator