ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  distop Unicode version

Theorem distop 12725
Description: The discrete topology on a set  A. Part of Example 2 in [Munkres] p. 77. (Contributed by FL, 17-Jul-2006.) (Revised by Mario Carneiro, 19-Mar-2015.)
Assertion
Ref Expression
distop  |-  ( A  e.  V  ->  ~P A  e.  Top )

Proof of Theorem distop
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uniss 3810 . . . . . 6  |-  ( x 
C_  ~P A  ->  U. x  C_ 
U. ~P A )
2 unipw 4195 . . . . . 6  |-  U. ~P A  =  A
31, 2sseqtrdi 3190 . . . . 5  |-  ( x 
C_  ~P A  ->  U. x  C_  A )
4 vuniex 4416 . . . . . 6  |-  U. x  e.  _V
54elpw 3565 . . . . 5  |-  ( U. x  e.  ~P A  <->  U. x  C_  A )
63, 5sylibr 133 . . . 4  |-  ( x 
C_  ~P A  ->  U. x  e.  ~P A )
76ax-gen 1437 . . 3  |-  A. x
( x  C_  ~P A  ->  U. x  e.  ~P A )
87a1i 9 . 2  |-  ( A  e.  V  ->  A. x
( x  C_  ~P A  ->  U. x  e.  ~P A ) )
9 velpw 3566 . . . . . 6  |-  ( x  e.  ~P A  <->  x  C_  A
)
10 velpw 3566 . . . . . . . 8  |-  ( y  e.  ~P A  <->  y  C_  A )
11 ssinss1 3351 . . . . . . . . . 10  |-  ( x 
C_  A  ->  (
x  i^i  y )  C_  A )
1211a1i 9 . . . . . . . . 9  |-  ( y 
C_  A  ->  (
x  C_  A  ->  ( x  i^i  y ) 
C_  A ) )
13 vex 2729 . . . . . . . . . . 11  |-  y  e. 
_V
1413inex2 4117 . . . . . . . . . 10  |-  ( x  i^i  y )  e. 
_V
1514elpw 3565 . . . . . . . . 9  |-  ( ( x  i^i  y )  e.  ~P A  <->  ( x  i^i  y )  C_  A
)
1612, 15syl6ibr 161 . . . . . . . 8  |-  ( y 
C_  A  ->  (
x  C_  A  ->  ( x  i^i  y )  e.  ~P A ) )
1710, 16sylbi 120 . . . . . . 7  |-  ( y  e.  ~P A  -> 
( x  C_  A  ->  ( x  i^i  y
)  e.  ~P A
) )
1817com12 30 . . . . . 6  |-  ( x 
C_  A  ->  (
y  e.  ~P A  ->  ( x  i^i  y
)  e.  ~P A
) )
199, 18sylbi 120 . . . . 5  |-  ( x  e.  ~P A  -> 
( y  e.  ~P A  ->  ( x  i^i  y )  e.  ~P A ) )
2019ralrimiv 2538 . . . 4  |-  ( x  e.  ~P A  ->  A. y  e.  ~P  A ( x  i^i  y )  e.  ~P A )
2120rgen 2519 . . 3  |-  A. x  e.  ~P  A A. y  e.  ~P  A ( x  i^i  y )  e. 
~P A
2221a1i 9 . 2  |-  ( A  e.  V  ->  A. x  e.  ~P  A A. y  e.  ~P  A ( x  i^i  y )  e. 
~P A )
23 pwexg 4159 . . 3  |-  ( A  e.  V  ->  ~P A  e.  _V )
24 istopg 12637 . . 3  |-  ( ~P A  e.  _V  ->  ( ~P A  e.  Top  <->  ( A. x ( x  C_  ~P A  ->  U. x  e.  ~P A )  /\  A. x  e.  ~P  A A. y  e.  ~P  A ( x  i^i  y )  e.  ~P A ) ) )
2523, 24syl 14 . 2  |-  ( A  e.  V  ->  ( ~P A  e.  Top  <->  ( A. x ( x  C_  ~P A  ->  U. x  e.  ~P A )  /\  A. x  e.  ~P  A A. y  e.  ~P  A ( x  i^i  y )  e.  ~P A ) ) )
268, 22, 25mpbir2and 934 1  |-  ( A  e.  V  ->  ~P A  e.  Top )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1341    e. wcel 2136   A.wral 2444   _Vcvv 2726    i^i cin 3115    C_ wss 3116   ~Pcpw 3559   U.cuni 3789   Topctop 12635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-uni 3790  df-top 12636
This theorem is referenced by:  topnex  12726  distopon  12727  distps  12731  discld  12776  restdis  12824  txdis  12917
  Copyright terms: Public domain W3C validator