Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > distop | Unicode version |
Description: The discrete topology on a set . Part of Example 2 in [Munkres] p. 77. (Contributed by FL, 17-Jul-2006.) (Revised by Mario Carneiro, 19-Mar-2015.) |
Ref | Expression |
---|---|
distop |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniss 3810 | . . . . . 6 | |
2 | unipw 4195 | . . . . . 6 | |
3 | 1, 2 | sseqtrdi 3190 | . . . . 5 |
4 | vuniex 4416 | . . . . . 6 | |
5 | 4 | elpw 3565 | . . . . 5 |
6 | 3, 5 | sylibr 133 | . . . 4 |
7 | 6 | ax-gen 1437 | . . 3 |
8 | 7 | a1i 9 | . 2 |
9 | velpw 3566 | . . . . . 6 | |
10 | velpw 3566 | . . . . . . . 8 | |
11 | ssinss1 3351 | . . . . . . . . . 10 | |
12 | 11 | a1i 9 | . . . . . . . . 9 |
13 | vex 2729 | . . . . . . . . . . 11 | |
14 | 13 | inex2 4117 | . . . . . . . . . 10 |
15 | 14 | elpw 3565 | . . . . . . . . 9 |
16 | 12, 15 | syl6ibr 161 | . . . . . . . 8 |
17 | 10, 16 | sylbi 120 | . . . . . . 7 |
18 | 17 | com12 30 | . . . . . 6 |
19 | 9, 18 | sylbi 120 | . . . . 5 |
20 | 19 | ralrimiv 2538 | . . . 4 |
21 | 20 | rgen 2519 | . . 3 |
22 | 21 | a1i 9 | . 2 |
23 | pwexg 4159 | . . 3 | |
24 | istopg 12637 | . . 3 | |
25 | 23, 24 | syl 14 | . 2 |
26 | 8, 22, 25 | mpbir2and 934 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1341 wcel 2136 wral 2444 cvv 2726 cin 3115 wss 3116 cpw 3559 cuni 3789 ctop 12635 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-uni 3790 df-top 12636 |
This theorem is referenced by: topnex 12726 distopon 12727 distps 12731 discld 12776 restdis 12824 txdis 12917 |
Copyright terms: Public domain | W3C validator |