ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  distop Unicode version

Theorem distop 12879
Description: The discrete topology on a set  A. Part of Example 2 in [Munkres] p. 77. (Contributed by FL, 17-Jul-2006.) (Revised by Mario Carneiro, 19-Mar-2015.)
Assertion
Ref Expression
distop  |-  ( A  e.  V  ->  ~P A  e.  Top )

Proof of Theorem distop
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uniss 3817 . . . . . 6  |-  ( x 
C_  ~P A  ->  U. x  C_ 
U. ~P A )
2 unipw 4202 . . . . . 6  |-  U. ~P A  =  A
31, 2sseqtrdi 3195 . . . . 5  |-  ( x 
C_  ~P A  ->  U. x  C_  A )
4 vuniex 4423 . . . . . 6  |-  U. x  e.  _V
54elpw 3572 . . . . 5  |-  ( U. x  e.  ~P A  <->  U. x  C_  A )
63, 5sylibr 133 . . . 4  |-  ( x 
C_  ~P A  ->  U. x  e.  ~P A )
76ax-gen 1442 . . 3  |-  A. x
( x  C_  ~P A  ->  U. x  e.  ~P A )
87a1i 9 . 2  |-  ( A  e.  V  ->  A. x
( x  C_  ~P A  ->  U. x  e.  ~P A ) )
9 velpw 3573 . . . . . 6  |-  ( x  e.  ~P A  <->  x  C_  A
)
10 velpw 3573 . . . . . . . 8  |-  ( y  e.  ~P A  <->  y  C_  A )
11 ssinss1 3356 . . . . . . . . . 10  |-  ( x 
C_  A  ->  (
x  i^i  y )  C_  A )
1211a1i 9 . . . . . . . . 9  |-  ( y 
C_  A  ->  (
x  C_  A  ->  ( x  i^i  y ) 
C_  A ) )
13 vex 2733 . . . . . . . . . . 11  |-  y  e. 
_V
1413inex2 4124 . . . . . . . . . 10  |-  ( x  i^i  y )  e. 
_V
1514elpw 3572 . . . . . . . . 9  |-  ( ( x  i^i  y )  e.  ~P A  <->  ( x  i^i  y )  C_  A
)
1612, 15syl6ibr 161 . . . . . . . 8  |-  ( y 
C_  A  ->  (
x  C_  A  ->  ( x  i^i  y )  e.  ~P A ) )
1710, 16sylbi 120 . . . . . . 7  |-  ( y  e.  ~P A  -> 
( x  C_  A  ->  ( x  i^i  y
)  e.  ~P A
) )
1817com12 30 . . . . . 6  |-  ( x 
C_  A  ->  (
y  e.  ~P A  ->  ( x  i^i  y
)  e.  ~P A
) )
199, 18sylbi 120 . . . . 5  |-  ( x  e.  ~P A  -> 
( y  e.  ~P A  ->  ( x  i^i  y )  e.  ~P A ) )
2019ralrimiv 2542 . . . 4  |-  ( x  e.  ~P A  ->  A. y  e.  ~P  A ( x  i^i  y )  e.  ~P A )
2120rgen 2523 . . 3  |-  A. x  e.  ~P  A A. y  e.  ~P  A ( x  i^i  y )  e. 
~P A
2221a1i 9 . 2  |-  ( A  e.  V  ->  A. x  e.  ~P  A A. y  e.  ~P  A ( x  i^i  y )  e. 
~P A )
23 pwexg 4166 . . 3  |-  ( A  e.  V  ->  ~P A  e.  _V )
24 istopg 12791 . . 3  |-  ( ~P A  e.  _V  ->  ( ~P A  e.  Top  <->  ( A. x ( x  C_  ~P A  ->  U. x  e.  ~P A )  /\  A. x  e.  ~P  A A. y  e.  ~P  A ( x  i^i  y )  e.  ~P A ) ) )
2523, 24syl 14 . 2  |-  ( A  e.  V  ->  ( ~P A  e.  Top  <->  ( A. x ( x  C_  ~P A  ->  U. x  e.  ~P A )  /\  A. x  e.  ~P  A A. y  e.  ~P  A ( x  i^i  y )  e.  ~P A ) ) )
268, 22, 25mpbir2and 939 1  |-  ( A  e.  V  ->  ~P A  e.  Top )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1346    e. wcel 2141   A.wral 2448   _Vcvv 2730    i^i cin 3120    C_ wss 3121   ~Pcpw 3566   U.cuni 3796   Topctop 12789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-uni 3797  df-top 12790
This theorem is referenced by:  topnex  12880  distopon  12881  distps  12885  discld  12930  restdis  12978  txdis  13071
  Copyright terms: Public domain W3C validator