ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  distop Unicode version

Theorem distop 14590
Description: The discrete topology on a set  A. Part of Example 2 in [Munkres] p. 77. (Contributed by FL, 17-Jul-2006.) (Revised by Mario Carneiro, 19-Mar-2015.)
Assertion
Ref Expression
distop  |-  ( A  e.  V  ->  ~P A  e.  Top )

Proof of Theorem distop
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uniss 3871 . . . . . 6  |-  ( x 
C_  ~P A  ->  U. x  C_ 
U. ~P A )
2 unipw 4262 . . . . . 6  |-  U. ~P A  =  A
31, 2sseqtrdi 3241 . . . . 5  |-  ( x 
C_  ~P A  ->  U. x  C_  A )
4 vuniex 4486 . . . . . 6  |-  U. x  e.  _V
54elpw 3622 . . . . 5  |-  ( U. x  e.  ~P A  <->  U. x  C_  A )
63, 5sylibr 134 . . . 4  |-  ( x 
C_  ~P A  ->  U. x  e.  ~P A )
76ax-gen 1472 . . 3  |-  A. x
( x  C_  ~P A  ->  U. x  e.  ~P A )
87a1i 9 . 2  |-  ( A  e.  V  ->  A. x
( x  C_  ~P A  ->  U. x  e.  ~P A ) )
9 velpw 3623 . . . . . 6  |-  ( x  e.  ~P A  <->  x  C_  A
)
10 velpw 3623 . . . . . . . 8  |-  ( y  e.  ~P A  <->  y  C_  A )
11 ssinss1 3402 . . . . . . . . . 10  |-  ( x 
C_  A  ->  (
x  i^i  y )  C_  A )
1211a1i 9 . . . . . . . . 9  |-  ( y 
C_  A  ->  (
x  C_  A  ->  ( x  i^i  y ) 
C_  A ) )
13 vex 2775 . . . . . . . . . . 11  |-  y  e. 
_V
1413inex2 4180 . . . . . . . . . 10  |-  ( x  i^i  y )  e. 
_V
1514elpw 3622 . . . . . . . . 9  |-  ( ( x  i^i  y )  e.  ~P A  <->  ( x  i^i  y )  C_  A
)
1612, 15imbitrrdi 162 . . . . . . . 8  |-  ( y 
C_  A  ->  (
x  C_  A  ->  ( x  i^i  y )  e.  ~P A ) )
1710, 16sylbi 121 . . . . . . 7  |-  ( y  e.  ~P A  -> 
( x  C_  A  ->  ( x  i^i  y
)  e.  ~P A
) )
1817com12 30 . . . . . 6  |-  ( x 
C_  A  ->  (
y  e.  ~P A  ->  ( x  i^i  y
)  e.  ~P A
) )
199, 18sylbi 121 . . . . 5  |-  ( x  e.  ~P A  -> 
( y  e.  ~P A  ->  ( x  i^i  y )  e.  ~P A ) )
2019ralrimiv 2578 . . . 4  |-  ( x  e.  ~P A  ->  A. y  e.  ~P  A ( x  i^i  y )  e.  ~P A )
2120rgen 2559 . . 3  |-  A. x  e.  ~P  A A. y  e.  ~P  A ( x  i^i  y )  e. 
~P A
2221a1i 9 . 2  |-  ( A  e.  V  ->  A. x  e.  ~P  A A. y  e.  ~P  A ( x  i^i  y )  e. 
~P A )
23 pwexg 4225 . . 3  |-  ( A  e.  V  ->  ~P A  e.  _V )
24 istopg 14504 . . 3  |-  ( ~P A  e.  _V  ->  ( ~P A  e.  Top  <->  ( A. x ( x  C_  ~P A  ->  U. x  e.  ~P A )  /\  A. x  e.  ~P  A A. y  e.  ~P  A ( x  i^i  y )  e.  ~P A ) ) )
2523, 24syl 14 . 2  |-  ( A  e.  V  ->  ( ~P A  e.  Top  <->  ( A. x ( x  C_  ~P A  ->  U. x  e.  ~P A )  /\  A. x  e.  ~P  A A. y  e.  ~P  A ( x  i^i  y )  e.  ~P A ) ) )
268, 22, 25mpbir2and 947 1  |-  ( A  e.  V  ->  ~P A  e.  Top )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1371    e. wcel 2176   A.wral 2484   _Vcvv 2772    i^i cin 3165    C_ wss 3166   ~Pcpw 3616   U.cuni 3850   Topctop 14502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-un 4481
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-uni 3851  df-top 14503
This theorem is referenced by:  topnex  14591  distopon  14592  distps  14596  discld  14641  restdis  14689  txdis  14782
  Copyright terms: Public domain W3C validator