Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > distop | Unicode version |
Description: The discrete topology on a set . Part of Example 2 in [Munkres] p. 77. (Contributed by FL, 17-Jul-2006.) (Revised by Mario Carneiro, 19-Mar-2015.) |
Ref | Expression |
---|---|
distop |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniss 3826 | . . . . . 6 | |
2 | unipw 4211 | . . . . . 6 | |
3 | 1, 2 | sseqtrdi 3201 | . . . . 5 |
4 | vuniex 4432 | . . . . . 6 | |
5 | 4 | elpw 3578 | . . . . 5 |
6 | 3, 5 | sylibr 134 | . . . 4 |
7 | 6 | ax-gen 1447 | . . 3 |
8 | 7 | a1i 9 | . 2 |
9 | velpw 3579 | . . . . . 6 | |
10 | velpw 3579 | . . . . . . . 8 | |
11 | ssinss1 3362 | . . . . . . . . . 10 | |
12 | 11 | a1i 9 | . . . . . . . . 9 |
13 | vex 2738 | . . . . . . . . . . 11 | |
14 | 13 | inex2 4133 | . . . . . . . . . 10 |
15 | 14 | elpw 3578 | . . . . . . . . 9 |
16 | 12, 15 | syl6ibr 162 | . . . . . . . 8 |
17 | 10, 16 | sylbi 121 | . . . . . . 7 |
18 | 17 | com12 30 | . . . . . 6 |
19 | 9, 18 | sylbi 121 | . . . . 5 |
20 | 19 | ralrimiv 2547 | . . . 4 |
21 | 20 | rgen 2528 | . . 3 |
22 | 21 | a1i 9 | . 2 |
23 | pwexg 4175 | . . 3 | |
24 | istopg 13048 | . . 3 | |
25 | 23, 24 | syl 14 | . 2 |
26 | 8, 22, 25 | mpbir2and 944 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 wal 1351 wcel 2146 wral 2453 cvv 2735 cin 3126 wss 3127 cpw 3572 cuni 3805 ctop 13046 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-un 4427 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-uni 3806 df-top 13047 |
This theorem is referenced by: topnex 13137 distopon 13138 distps 13142 discld 13187 restdis 13235 txdis 13328 |
Copyright terms: Public domain | W3C validator |