Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > distop | Unicode version |
Description: The discrete topology on a set . Part of Example 2 in [Munkres] p. 77. (Contributed by FL, 17-Jul-2006.) (Revised by Mario Carneiro, 19-Mar-2015.) |
Ref | Expression |
---|---|
distop |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniss 3817 | . . . . . 6 | |
2 | unipw 4202 | . . . . . 6 | |
3 | 1, 2 | sseqtrdi 3195 | . . . . 5 |
4 | vuniex 4423 | . . . . . 6 | |
5 | 4 | elpw 3572 | . . . . 5 |
6 | 3, 5 | sylibr 133 | . . . 4 |
7 | 6 | ax-gen 1442 | . . 3 |
8 | 7 | a1i 9 | . 2 |
9 | velpw 3573 | . . . . . 6 | |
10 | velpw 3573 | . . . . . . . 8 | |
11 | ssinss1 3356 | . . . . . . . . . 10 | |
12 | 11 | a1i 9 | . . . . . . . . 9 |
13 | vex 2733 | . . . . . . . . . . 11 | |
14 | 13 | inex2 4124 | . . . . . . . . . 10 |
15 | 14 | elpw 3572 | . . . . . . . . 9 |
16 | 12, 15 | syl6ibr 161 | . . . . . . . 8 |
17 | 10, 16 | sylbi 120 | . . . . . . 7 |
18 | 17 | com12 30 | . . . . . 6 |
19 | 9, 18 | sylbi 120 | . . . . 5 |
20 | 19 | ralrimiv 2542 | . . . 4 |
21 | 20 | rgen 2523 | . . 3 |
22 | 21 | a1i 9 | . 2 |
23 | pwexg 4166 | . . 3 | |
24 | istopg 12791 | . . 3 | |
25 | 23, 24 | syl 14 | . 2 |
26 | 8, 22, 25 | mpbir2and 939 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1346 wcel 2141 wral 2448 cvv 2730 cin 3120 wss 3121 cpw 3566 cuni 3796 ctop 12789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-uni 3797 df-top 12790 |
This theorem is referenced by: topnex 12880 distopon 12881 distps 12885 discld 12930 restdis 12978 txdis 13071 |
Copyright terms: Public domain | W3C validator |