ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  distop Unicode version

Theorem distop 13136
Description: The discrete topology on a set  A. Part of Example 2 in [Munkres] p. 77. (Contributed by FL, 17-Jul-2006.) (Revised by Mario Carneiro, 19-Mar-2015.)
Assertion
Ref Expression
distop  |-  ( A  e.  V  ->  ~P A  e.  Top )

Proof of Theorem distop
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uniss 3826 . . . . . 6  |-  ( x 
C_  ~P A  ->  U. x  C_ 
U. ~P A )
2 unipw 4211 . . . . . 6  |-  U. ~P A  =  A
31, 2sseqtrdi 3201 . . . . 5  |-  ( x 
C_  ~P A  ->  U. x  C_  A )
4 vuniex 4432 . . . . . 6  |-  U. x  e.  _V
54elpw 3578 . . . . 5  |-  ( U. x  e.  ~P A  <->  U. x  C_  A )
63, 5sylibr 134 . . . 4  |-  ( x 
C_  ~P A  ->  U. x  e.  ~P A )
76ax-gen 1447 . . 3  |-  A. x
( x  C_  ~P A  ->  U. x  e.  ~P A )
87a1i 9 . 2  |-  ( A  e.  V  ->  A. x
( x  C_  ~P A  ->  U. x  e.  ~P A ) )
9 velpw 3579 . . . . . 6  |-  ( x  e.  ~P A  <->  x  C_  A
)
10 velpw 3579 . . . . . . . 8  |-  ( y  e.  ~P A  <->  y  C_  A )
11 ssinss1 3362 . . . . . . . . . 10  |-  ( x 
C_  A  ->  (
x  i^i  y )  C_  A )
1211a1i 9 . . . . . . . . 9  |-  ( y 
C_  A  ->  (
x  C_  A  ->  ( x  i^i  y ) 
C_  A ) )
13 vex 2738 . . . . . . . . . . 11  |-  y  e. 
_V
1413inex2 4133 . . . . . . . . . 10  |-  ( x  i^i  y )  e. 
_V
1514elpw 3578 . . . . . . . . 9  |-  ( ( x  i^i  y )  e.  ~P A  <->  ( x  i^i  y )  C_  A
)
1612, 15syl6ibr 162 . . . . . . . 8  |-  ( y 
C_  A  ->  (
x  C_  A  ->  ( x  i^i  y )  e.  ~P A ) )
1710, 16sylbi 121 . . . . . . 7  |-  ( y  e.  ~P A  -> 
( x  C_  A  ->  ( x  i^i  y
)  e.  ~P A
) )
1817com12 30 . . . . . 6  |-  ( x 
C_  A  ->  (
y  e.  ~P A  ->  ( x  i^i  y
)  e.  ~P A
) )
199, 18sylbi 121 . . . . 5  |-  ( x  e.  ~P A  -> 
( y  e.  ~P A  ->  ( x  i^i  y )  e.  ~P A ) )
2019ralrimiv 2547 . . . 4  |-  ( x  e.  ~P A  ->  A. y  e.  ~P  A ( x  i^i  y )  e.  ~P A )
2120rgen 2528 . . 3  |-  A. x  e.  ~P  A A. y  e.  ~P  A ( x  i^i  y )  e. 
~P A
2221a1i 9 . 2  |-  ( A  e.  V  ->  A. x  e.  ~P  A A. y  e.  ~P  A ( x  i^i  y )  e. 
~P A )
23 pwexg 4175 . . 3  |-  ( A  e.  V  ->  ~P A  e.  _V )
24 istopg 13048 . . 3  |-  ( ~P A  e.  _V  ->  ( ~P A  e.  Top  <->  ( A. x ( x  C_  ~P A  ->  U. x  e.  ~P A )  /\  A. x  e.  ~P  A A. y  e.  ~P  A ( x  i^i  y )  e.  ~P A ) ) )
2523, 24syl 14 . 2  |-  ( A  e.  V  ->  ( ~P A  e.  Top  <->  ( A. x ( x  C_  ~P A  ->  U. x  e.  ~P A )  /\  A. x  e.  ~P  A A. y  e.  ~P  A ( x  i^i  y )  e.  ~P A ) ) )
268, 22, 25mpbir2and 944 1  |-  ( A  e.  V  ->  ~P A  e.  Top )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1351    e. wcel 2146   A.wral 2453   _Vcvv 2735    i^i cin 3126    C_ wss 3127   ~Pcpw 3572   U.cuni 3805   Topctop 13046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-un 4427
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-uni 3806  df-top 13047
This theorem is referenced by:  topnex  13137  distopon  13138  distps  13142  discld  13187  restdis  13235  txdis  13328
  Copyright terms: Public domain W3C validator