Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  inex2 GIF version

Theorem inex2 4072
 Description: Separation Scheme (Aussonderung) using class notation. (Contributed by NM, 27-Apr-1994.)
Hypothesis
Ref Expression
inex2.1 𝐴 ∈ V
Assertion
Ref Expression
inex2 (𝐵𝐴) ∈ V

Proof of Theorem inex2
StepHypRef Expression
1 incom 3274 . 2 (𝐵𝐴) = (𝐴𝐵)
2 inex2.1 . . 3 𝐴 ∈ V
32inex1 4071 . 2 (𝐴𝐵) ∈ V
41, 3eqeltri 2213 1 (𝐵𝐴) ∈ V
 Colors of variables: wff set class Syntax hints:   ∈ wcel 1481  Vcvv 2690   ∩ cin 3076 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4055 This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-v 2692  df-in 3083 This theorem is referenced by:  ssex  4074  peano5nnnn  7744  peano5nni  8767  tgdom  12300  distop  12313
 Copyright terms: Public domain W3C validator