ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano5nnnn Unicode version

Theorem peano5nnnn 8005
Description: Peano's inductive postulate. This is a counterpart to peano5nni 9039 designed for real number axioms which involve natural numbers (notably, axcaucvg 8013). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.)
Hypothesis
Ref Expression
nntopi.n  |-  N  = 
|^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
Assertion
Ref Expression
peano5nnnn  |-  ( ( 1  e.  A  /\  A. z  e.  A  ( z  +  1 )  e.  A )  ->  N  C_  A )
Distinct variable groups:    x, y, A   
z, A, y
Allowed substitution hints:    N( x, y, z)

Proof of Theorem peano5nnnn
StepHypRef Expression
1 oveq1 5951 . . . 4  |-  ( y  =  z  ->  (
y  +  1 )  =  ( z  +  1 ) )
21eleq1d 2274 . . 3  |-  ( y  =  z  ->  (
( y  +  1 )  e.  A  <->  ( z  +  1 )  e.  A ) )
32cbvralv 2738 . 2  |-  ( A. y  e.  A  (
y  +  1 )  e.  A  <->  A. z  e.  A  ( z  +  1 )  e.  A )
4 ax1re 7975 . . . . 5  |-  1  e.  RR
5 elin 3356 . . . . . 6  |-  ( 1  e.  ( A  i^i  RR )  <->  ( 1  e.  A  /\  1  e.  RR ) )
65biimpri 133 . . . . 5  |-  ( ( 1  e.  A  /\  1  e.  RR )  ->  1  e.  ( A  i^i  RR ) )
74, 6mpan2 425 . . . 4  |-  ( 1  e.  A  ->  1  e.  ( A  i^i  RR ) )
8 inss1 3393 . . . . . 6  |-  ( A  i^i  RR )  C_  A
9 ssralv 3257 . . . . . 6  |-  ( ( A  i^i  RR ) 
C_  A  ->  ( A. y  e.  A  ( y  +  1 )  e.  A  ->  A. y  e.  ( A  i^i  RR ) ( y  +  1 )  e.  A ) )
108, 9ax-mp 5 . . . . 5  |-  ( A. y  e.  A  (
y  +  1 )  e.  A  ->  A. y  e.  ( A  i^i  RR ) ( y  +  1 )  e.  A
)
11 inss2 3394 . . . . . . . 8  |-  ( A  i^i  RR )  C_  RR
1211sseli 3189 . . . . . . 7  |-  ( y  e.  ( A  i^i  RR )  ->  y  e.  RR )
13 axaddrcl 7978 . . . . . . . 8  |-  ( ( y  e.  RR  /\  1  e.  RR )  ->  ( y  +  1 )  e.  RR )
144, 13mpan2 425 . . . . . . 7  |-  ( y  e.  RR  ->  (
y  +  1 )  e.  RR )
15 elin 3356 . . . . . . . 8  |-  ( ( y  +  1 )  e.  ( A  i^i  RR )  <->  ( ( y  +  1 )  e.  A  /\  ( y  +  1 )  e.  RR ) )
1615simplbi2com 1464 . . . . . . 7  |-  ( ( y  +  1 )  e.  RR  ->  (
( y  +  1 )  e.  A  -> 
( y  +  1 )  e.  ( A  i^i  RR ) ) )
1712, 14, 163syl 17 . . . . . 6  |-  ( y  e.  ( A  i^i  RR )  ->  ( (
y  +  1 )  e.  A  ->  (
y  +  1 )  e.  ( A  i^i  RR ) ) )
1817ralimia 2567 . . . . 5  |-  ( A. y  e.  ( A  i^i  RR ) ( y  +  1 )  e.  A  ->  A. y  e.  ( A  i^i  RR ) ( y  +  1 )  e.  ( A  i^i  RR ) )
1910, 18syl 14 . . . 4  |-  ( A. y  e.  A  (
y  +  1 )  e.  A  ->  A. y  e.  ( A  i^i  RR ) ( y  +  1 )  e.  ( A  i^i  RR ) )
20 axcnex 7972 . . . . . . 7  |-  CC  e.  _V
21 axresscn 7973 . . . . . . 7  |-  RR  C_  CC
2220, 21ssexi 4182 . . . . . 6  |-  RR  e.  _V
2322inex2 4179 . . . . 5  |-  ( A  i^i  RR )  e. 
_V
24 eleq2 2269 . . . . . . . 8  |-  ( x  =  ( A  i^i  RR )  ->  ( 1  e.  x  <->  1  e.  ( A  i^i  RR ) ) )
25 eleq2 2269 . . . . . . . . 9  |-  ( x  =  ( A  i^i  RR )  ->  ( (
y  +  1 )  e.  x  <->  ( y  +  1 )  e.  ( A  i^i  RR ) ) )
2625raleqbi1dv 2714 . . . . . . . 8  |-  ( x  =  ( A  i^i  RR )  ->  ( A. y  e.  x  (
y  +  1 )  e.  x  <->  A. y  e.  ( A  i^i  RR ) ( y  +  1 )  e.  ( A  i^i  RR ) ) )
2724, 26anbi12d 473 . . . . . . 7  |-  ( x  =  ( A  i^i  RR )  ->  ( (
1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x )  <->  ( 1  e.  ( A  i^i  RR )  /\  A. y  e.  ( A  i^i  RR ) ( y  +  1 )  e.  ( A  i^i  RR ) ) ) )
2827elabg 2919 . . . . . 6  |-  ( ( A  i^i  RR )  e.  _V  ->  (
( A  i^i  RR )  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  <->  ( 1  e.  ( A  i^i  RR )  /\  A. y  e.  ( A  i^i  RR ) ( y  +  1 )  e.  ( A  i^i  RR ) ) ) )
29 nntopi.n . . . . . . 7  |-  N  = 
|^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
30 intss1 3900 . . . . . . 7  |-  ( ( A  i^i  RR )  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  ->  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  C_  ( A  i^i  RR ) )
3129, 30eqsstrid 3239 . . . . . 6  |-  ( ( A  i^i  RR )  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  ->  N  C_  ( A  i^i  RR ) )
3228, 31biimtrrdi 164 . . . . 5  |-  ( ( A  i^i  RR )  e.  _V  ->  (
( 1  e.  ( A  i^i  RR )  /\  A. y  e.  ( A  i^i  RR ) ( y  +  1 )  e.  ( A  i^i  RR ) )  ->  N  C_  ( A  i^i  RR ) ) )
3323, 32ax-mp 5 . . . 4  |-  ( ( 1  e.  ( A  i^i  RR )  /\  A. y  e.  ( A  i^i  RR ) ( y  +  1 )  e.  ( A  i^i  RR ) )  ->  N  C_  ( A  i^i  RR ) )
347, 19, 33syl2an 289 . . 3  |-  ( ( 1  e.  A  /\  A. y  e.  A  ( y  +  1 )  e.  A )  ->  N  C_  ( A  i^i  RR ) )
3534, 8sstrdi 3205 . 2  |-  ( ( 1  e.  A  /\  A. y  e.  A  ( y  +  1 )  e.  A )  ->  N  C_  A )
363, 35sylan2br 288 1  |-  ( ( 1  e.  A  /\  A. z  e.  A  ( z  +  1 )  e.  A )  ->  N  C_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   {cab 2191   A.wral 2484   _Vcvv 2772    i^i cin 3165    C_ wss 3166   |^|cint 3885  (class class class)co 5944   CCcc 7923   RRcr 7924   1c1 7926    + caddc 7928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-eprel 4336  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-1o 6502  df-2o 6503  df-oadd 6506  df-omul 6507  df-er 6620  df-ec 6622  df-qs 6626  df-ni 7417  df-pli 7418  df-mi 7419  df-lti 7420  df-plpq 7457  df-mpq 7458  df-enq 7460  df-nqqs 7461  df-plqqs 7462  df-mqqs 7463  df-1nqqs 7464  df-rq 7465  df-ltnqqs 7466  df-enq0 7537  df-nq0 7538  df-0nq0 7539  df-plq0 7540  df-mq0 7541  df-inp 7579  df-i1p 7580  df-iplp 7581  df-enr 7839  df-nr 7840  df-plr 7841  df-0r 7844  df-1r 7845  df-c 7931  df-1 7933  df-r 7935  df-add 7936
This theorem is referenced by:  nnindnn  8006
  Copyright terms: Public domain W3C validator