ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano5nnnn Unicode version

Theorem peano5nnnn 7406
Description: Peano's inductive postulate. This is a counterpart to peano5nni 8397 designed for real number axioms which involve natural numbers (notably, axcaucvg 7414). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.)
Hypothesis
Ref Expression
nntopi.n  |-  N  = 
|^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
Assertion
Ref Expression
peano5nnnn  |-  ( ( 1  e.  A  /\  A. z  e.  A  ( z  +  1 )  e.  A )  ->  N  C_  A )
Distinct variable groups:    x, y, A   
z, A, y
Allowed substitution hints:    N( x, y, z)

Proof of Theorem peano5nnnn
StepHypRef Expression
1 oveq1 5641 . . . 4  |-  ( y  =  z  ->  (
y  +  1 )  =  ( z  +  1 ) )
21eleq1d 2156 . . 3  |-  ( y  =  z  ->  (
( y  +  1 )  e.  A  <->  ( z  +  1 )  e.  A ) )
32cbvralv 2590 . 2  |-  ( A. y  e.  A  (
y  +  1 )  e.  A  <->  A. z  e.  A  ( z  +  1 )  e.  A )
4 ax1re 7378 . . . . 5  |-  1  e.  RR
5 elin 3181 . . . . . 6  |-  ( 1  e.  ( A  i^i  RR )  <->  ( 1  e.  A  /\  1  e.  RR ) )
65biimpri 131 . . . . 5  |-  ( ( 1  e.  A  /\  1  e.  RR )  ->  1  e.  ( A  i^i  RR ) )
74, 6mpan2 416 . . . 4  |-  ( 1  e.  A  ->  1  e.  ( A  i^i  RR ) )
8 inss1 3218 . . . . . 6  |-  ( A  i^i  RR )  C_  A
9 ssralv 3083 . . . . . 6  |-  ( ( A  i^i  RR ) 
C_  A  ->  ( A. y  e.  A  ( y  +  1 )  e.  A  ->  A. y  e.  ( A  i^i  RR ) ( y  +  1 )  e.  A ) )
108, 9ax-mp 7 . . . . 5  |-  ( A. y  e.  A  (
y  +  1 )  e.  A  ->  A. y  e.  ( A  i^i  RR ) ( y  +  1 )  e.  A
)
11 inss2 3219 . . . . . . . 8  |-  ( A  i^i  RR )  C_  RR
1211sseli 3019 . . . . . . 7  |-  ( y  e.  ( A  i^i  RR )  ->  y  e.  RR )
13 axaddrcl 7381 . . . . . . . 8  |-  ( ( y  e.  RR  /\  1  e.  RR )  ->  ( y  +  1 )  e.  RR )
144, 13mpan2 416 . . . . . . 7  |-  ( y  e.  RR  ->  (
y  +  1 )  e.  RR )
15 elin 3181 . . . . . . . 8  |-  ( ( y  +  1 )  e.  ( A  i^i  RR )  <->  ( ( y  +  1 )  e.  A  /\  ( y  +  1 )  e.  RR ) )
1615simplbi2com 1378 . . . . . . 7  |-  ( ( y  +  1 )  e.  RR  ->  (
( y  +  1 )  e.  A  -> 
( y  +  1 )  e.  ( A  i^i  RR ) ) )
1712, 14, 163syl 17 . . . . . 6  |-  ( y  e.  ( A  i^i  RR )  ->  ( (
y  +  1 )  e.  A  ->  (
y  +  1 )  e.  ( A  i^i  RR ) ) )
1817ralimia 2436 . . . . 5  |-  ( A. y  e.  ( A  i^i  RR ) ( y  +  1 )  e.  A  ->  A. y  e.  ( A  i^i  RR ) ( y  +  1 )  e.  ( A  i^i  RR ) )
1910, 18syl 14 . . . 4  |-  ( A. y  e.  A  (
y  +  1 )  e.  A  ->  A. y  e.  ( A  i^i  RR ) ( y  +  1 )  e.  ( A  i^i  RR ) )
20 axcnex 7375 . . . . . . 7  |-  CC  e.  _V
21 axresscn 7376 . . . . . . 7  |-  RR  C_  CC
2220, 21ssexi 3969 . . . . . 6  |-  RR  e.  _V
2322inex2 3966 . . . . 5  |-  ( A  i^i  RR )  e. 
_V
24 eleq2 2151 . . . . . . . 8  |-  ( x  =  ( A  i^i  RR )  ->  ( 1  e.  x  <->  1  e.  ( A  i^i  RR ) ) )
25 eleq2 2151 . . . . . . . . 9  |-  ( x  =  ( A  i^i  RR )  ->  ( (
y  +  1 )  e.  x  <->  ( y  +  1 )  e.  ( A  i^i  RR ) ) )
2625raleqbi1dv 2570 . . . . . . . 8  |-  ( x  =  ( A  i^i  RR )  ->  ( A. y  e.  x  (
y  +  1 )  e.  x  <->  A. y  e.  ( A  i^i  RR ) ( y  +  1 )  e.  ( A  i^i  RR ) ) )
2724, 26anbi12d 457 . . . . . . 7  |-  ( x  =  ( A  i^i  RR )  ->  ( (
1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x )  <->  ( 1  e.  ( A  i^i  RR )  /\  A. y  e.  ( A  i^i  RR ) ( y  +  1 )  e.  ( A  i^i  RR ) ) ) )
2827elabg 2759 . . . . . 6  |-  ( ( A  i^i  RR )  e.  _V  ->  (
( A  i^i  RR )  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  <->  ( 1  e.  ( A  i^i  RR )  /\  A. y  e.  ( A  i^i  RR ) ( y  +  1 )  e.  ( A  i^i  RR ) ) ) )
29 nntopi.n . . . . . . 7  |-  N  = 
|^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
30 intss1 3698 . . . . . . 7  |-  ( ( A  i^i  RR )  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  ->  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  C_  ( A  i^i  RR ) )
3129, 30syl5eqss 3068 . . . . . 6  |-  ( ( A  i^i  RR )  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  ->  N  C_  ( A  i^i  RR ) )
3228, 31syl6bir 162 . . . . 5  |-  ( ( A  i^i  RR )  e.  _V  ->  (
( 1  e.  ( A  i^i  RR )  /\  A. y  e.  ( A  i^i  RR ) ( y  +  1 )  e.  ( A  i^i  RR ) )  ->  N  C_  ( A  i^i  RR ) ) )
3323, 32ax-mp 7 . . . 4  |-  ( ( 1  e.  ( A  i^i  RR )  /\  A. y  e.  ( A  i^i  RR ) ( y  +  1 )  e.  ( A  i^i  RR ) )  ->  N  C_  ( A  i^i  RR ) )
347, 19, 33syl2an 283 . . 3  |-  ( ( 1  e.  A  /\  A. y  e.  A  ( y  +  1 )  e.  A )  ->  N  C_  ( A  i^i  RR ) )
3534, 8syl6ss 3035 . 2  |-  ( ( 1  e.  A  /\  A. y  e.  A  ( y  +  1 )  e.  A )  ->  N  C_  A )
363, 35sylan2br 282 1  |-  ( ( 1  e.  A  /\  A. z  e.  A  ( z  +  1 )  e.  A )  ->  N  C_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1289    e. wcel 1438   {cab 2074   A.wral 2359   _Vcvv 2619    i^i cin 2996    C_ wss 2997   |^|cint 3683  (class class class)co 5634   CCcc 7327   RRcr 7328   1c1 7330    + caddc 7332
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3946  ax-sep 3949  ax-nul 3957  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-iinf 4393
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2839  df-csb 2932  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-iun 3727  df-br 3838  df-opab 3892  df-mpt 3893  df-tr 3929  df-eprel 4107  df-id 4111  df-po 4114  df-iso 4115  df-iord 4184  df-on 4186  df-suc 4189  df-iom 4396  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007  df-fo 5008  df-f1o 5009  df-fv 5010  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-1st 5893  df-2nd 5894  df-recs 6052  df-irdg 6117  df-1o 6163  df-2o 6164  df-oadd 6167  df-omul 6168  df-er 6272  df-ec 6274  df-qs 6278  df-ni 6842  df-pli 6843  df-mi 6844  df-lti 6845  df-plpq 6882  df-mpq 6883  df-enq 6885  df-nqqs 6886  df-plqqs 6887  df-mqqs 6888  df-1nqqs 6889  df-rq 6890  df-ltnqqs 6891  df-enq0 6962  df-nq0 6963  df-0nq0 6964  df-plq0 6965  df-mq0 6966  df-inp 7004  df-i1p 7005  df-iplp 7006  df-enr 7251  df-nr 7252  df-plr 7253  df-0r 7256  df-1r 7257  df-c 7335  df-1 7337  df-r 7339  df-add 7340
This theorem is referenced by:  nnindnn  7407
  Copyright terms: Public domain W3C validator