Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > infeq1 | Unicode version |
Description: Equality theorem for infimum. (Contributed by AV, 2-Sep-2020.) |
Ref | Expression |
---|---|
infeq1 | inf inf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supeq1 6963 | . 2 | |
2 | df-inf 6962 | . 2 inf | |
3 | df-inf 6962 | . 2 inf | |
4 | 1, 2, 3 | 3eqtr4g 2228 | 1 inf inf |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 ccnv 4610 csup 6959 infcinf 6960 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-uni 3797 df-sup 6961 df-inf 6962 |
This theorem is referenced by: infeq1d 6989 infeq1i 6990 |
Copyright terms: Public domain | W3C validator |