| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > infeq1d | Unicode version | ||
| Description: Equality deduction for infimum. (Contributed by AV, 2-Sep-2020.) |
| Ref | Expression |
|---|---|
| infeq1d.1 |
|
| Ref | Expression |
|---|---|
| infeq1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infeq1d.1 |
. 2
| |
| 2 | infeq1 7139 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-uni 3865 df-sup 7112 df-inf 7113 |
| This theorem is referenced by: zsupssdc 10418 xrbdtri 11702 nnmindc 12470 nnminle 12471 lcmval 12500 lcmass 12522 odzval 12679 nninfdclemcl 12934 nninfdclemp1 12936 nninfdc 12939 bdmetval 15087 bdxmet 15088 qtopbasss 15108 hovera 15234 hoverb 15235 hoverlt1 15236 hovergt0 15237 ivthdich 15240 |
| Copyright terms: Public domain | W3C validator |