ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infeq1d Unicode version

Theorem infeq1d 6973
Description: Equality deduction for infimum. (Contributed by AV, 2-Sep-2020.)
Hypothesis
Ref Expression
infeq1d.1  |-  ( ph  ->  B  =  C )
Assertion
Ref Expression
infeq1d  |-  ( ph  -> inf ( B ,  A ,  R )  = inf ( C ,  A ,  R ) )

Proof of Theorem infeq1d
StepHypRef Expression
1 infeq1d.1 . 2  |-  ( ph  ->  B  =  C )
2 infeq1 6972 . 2  |-  ( B  =  C  -> inf ( B ,  A ,  R
)  = inf ( C ,  A ,  R
) )
31, 2syl 14 1  |-  ( ph  -> inf ( B ,  A ,  R )  = inf ( C ,  A ,  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343  infcinf 6944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ral 2448  df-rex 2449  df-rab 2452  df-uni 3789  df-sup 6945  df-inf 6946
This theorem is referenced by:  xrbdtri  11213  zsupssdc  11883  nnmindc  11963  nnminle  11964  lcmval  11991  lcmass  12013  odzval  12169  nninfdclemcl  12377  nninfdclemp1  12379  nninfdc  12382  bdmetval  13100  bdxmet  13101  qtopbasss  13121
  Copyright terms: Public domain W3C validator