ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infeq1d Unicode version

Theorem infeq1d 7029
Description: Equality deduction for infimum. (Contributed by AV, 2-Sep-2020.)
Hypothesis
Ref Expression
infeq1d.1  |-  ( ph  ->  B  =  C )
Assertion
Ref Expression
infeq1d  |-  ( ph  -> inf ( B ,  A ,  R )  = inf ( C ,  A ,  R ) )

Proof of Theorem infeq1d
StepHypRef Expression
1 infeq1d.1 . 2  |-  ( ph  ->  B  =  C )
2 infeq1 7028 . 2  |-  ( B  =  C  -> inf ( B ,  A ,  R
)  = inf ( C ,  A ,  R
) )
31, 2syl 14 1  |-  ( ph  -> inf ( B ,  A ,  R )  = inf ( C ,  A ,  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364  infcinf 7000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-rab 2477  df-uni 3825  df-sup 7001  df-inf 7002
This theorem is referenced by:  xrbdtri  11302  zsupssdc  11973  nnmindc  12053  nnminle  12054  lcmval  12081  lcmass  12103  odzval  12259  nninfdclemcl  12467  nninfdclemp1  12469  nninfdc  12472  bdmetval  14384  bdxmet  14385  qtopbasss  14405
  Copyright terms: Public domain W3C validator