ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infeq1d Unicode version

Theorem infeq1d 7140
Description: Equality deduction for infimum. (Contributed by AV, 2-Sep-2020.)
Hypothesis
Ref Expression
infeq1d.1  |-  ( ph  ->  B  =  C )
Assertion
Ref Expression
infeq1d  |-  ( ph  -> inf ( B ,  A ,  R )  = inf ( C ,  A ,  R ) )

Proof of Theorem infeq1d
StepHypRef Expression
1 infeq1d.1 . 2  |-  ( ph  ->  B  =  C )
2 infeq1 7139 . 2  |-  ( B  =  C  -> inf ( B ,  A ,  R
)  = inf ( C ,  A ,  R
) )
31, 2syl 14 1  |-  ( ph  -> inf ( B ,  A ,  R )  = inf ( C ,  A ,  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373  infcinf 7111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-uni 3865  df-sup 7112  df-inf 7113
This theorem is referenced by:  zsupssdc  10418  xrbdtri  11702  nnmindc  12470  nnminle  12471  lcmval  12500  lcmass  12522  odzval  12679  nninfdclemcl  12934  nninfdclemp1  12936  nninfdc  12939  bdmetval  15087  bdxmet  15088  qtopbasss  15108  hovera  15234  hoverb  15235  hoverlt1  15236  hovergt0  15237  ivthdich  15240
  Copyright terms: Public domain W3C validator