| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > infeq1d | Unicode version | ||
| Description: Equality deduction for infimum. (Contributed by AV, 2-Sep-2020.) |
| Ref | Expression |
|---|---|
| infeq1d.1 |
|
| Ref | Expression |
|---|---|
| infeq1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infeq1d.1 |
. 2
| |
| 2 | infeq1 7086 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-uni 3841 df-sup 7059 df-inf 7060 |
| This theorem is referenced by: zsupssdc 10345 xrbdtri 11458 nnmindc 12226 nnminle 12227 lcmval 12256 lcmass 12278 odzval 12435 nninfdclemcl 12690 nninfdclemp1 12692 nninfdc 12695 bdmetval 14820 bdxmet 14821 qtopbasss 14841 hovera 14967 hoverb 14968 hoverlt1 14969 hovergt0 14970 ivthdich 14973 |
| Copyright terms: Public domain | W3C validator |