Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > supeq1 | Unicode version |
Description: Equality theorem for supremum. (Contributed by NM, 22-May-1999.) |
Ref | Expression |
---|---|
supeq1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleq 2652 | . . . . 5 | |
2 | rexeq 2653 | . . . . . . 7 | |
3 | 2 | imbi2d 229 | . . . . . 6 |
4 | 3 | ralbidv 2457 | . . . . 5 |
5 | 1, 4 | anbi12d 465 | . . . 4 |
6 | 5 | rabbidv 2701 | . . 3 |
7 | 6 | unieqd 3784 | . 2 |
8 | df-sup 6929 | . 2 | |
9 | df-sup 6929 | . 2 | |
10 | 7, 8, 9 | 3eqtr4g 2215 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wceq 1335 wral 2435 wrex 2436 crab 2439 cuni 3773 class class class wbr 3966 csup 6927 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-rab 2444 df-uni 3774 df-sup 6929 |
This theorem is referenced by: supeq1d 6932 supeq1i 6933 infeq1 6956 |
Copyright terms: Public domain | W3C validator |