ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  supeq1 Unicode version

Theorem supeq1 7114
Description: Equality theorem for supremum. (Contributed by NM, 22-May-1999.)
Assertion
Ref Expression
supeq1  |-  ( B  =  C  ->  sup ( B ,  A ,  R )  =  sup ( C ,  A ,  R ) )

Proof of Theorem supeq1
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 raleq 2705 . . . . 5  |-  ( B  =  C  ->  ( A. y  e.  B  -.  x R y  <->  A. y  e.  C  -.  x R y ) )
2 rexeq 2706 . . . . . . 7  |-  ( B  =  C  ->  ( E. z  e.  B  y R z  <->  E. z  e.  C  y R
z ) )
32imbi2d 230 . . . . . 6  |-  ( B  =  C  ->  (
( y R x  ->  E. z  e.  B  y R z )  <->  ( y R x  ->  E. z  e.  C  y R
z ) ) )
43ralbidv 2508 . . . . 5  |-  ( B  =  C  ->  ( A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z )  <->  A. y  e.  A  ( y R x  ->  E. z  e.  C  y R
z ) ) )
51, 4anbi12d 473 . . . 4  |-  ( B  =  C  ->  (
( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R
z ) )  <->  ( A. y  e.  C  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  C  y R z ) ) ) )
65rabbidv 2765 . . 3  |-  ( B  =  C  ->  { x  e.  A  |  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) }  =  { x  e.  A  |  ( A. y  e.  C  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  C  y R z ) ) } )
76unieqd 3875 . 2  |-  ( B  =  C  ->  U. {
x  e.  A  | 
( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R
z ) ) }  =  U. { x  e.  A  |  ( A. y  e.  C  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  C  y R z ) ) } )
8 df-sup 7112 . 2  |-  sup ( B ,  A ,  R )  =  U. { x  e.  A  |  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) ) }
9 df-sup 7112 . 2  |-  sup ( C ,  A ,  R )  =  U. { x  e.  A  |  ( A. y  e.  C  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  C  y R z ) ) }
107, 8, 93eqtr4g 2265 1  |-  ( B  =  C  ->  sup ( B ,  A ,  R )  =  sup ( C ,  A ,  R ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1373   A.wral 2486   E.wrex 2487   {crab 2490   U.cuni 3864   class class class wbr 4059   supcsup 7110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-uni 3865  df-sup 7112
This theorem is referenced by:  supeq1d  7115  supeq1i  7116  infeq1  7139
  Copyright terms: Public domain W3C validator