ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infeq1i Unicode version

Theorem infeq1i 7141
Description: Equality inference for infimum. (Contributed by AV, 2-Sep-2020.)
Hypothesis
Ref Expression
infeq1i.1  |-  B  =  C
Assertion
Ref Expression
infeq1i  |- inf ( B ,  A ,  R
)  = inf ( C ,  A ,  R
)

Proof of Theorem infeq1i
StepHypRef Expression
1 infeq1i.1 . 2  |-  B  =  C
2 infeq1 7139 . 2  |-  ( B  =  C  -> inf ( B ,  A ,  R
)  = inf ( C ,  A ,  R
) )
31, 2ax-mp 5 1  |- inf ( B ,  A ,  R
)  = inf ( C ,  A ,  R
)
Colors of variables: wff set class
Syntax hints:    = wceq 1373  infcinf 7111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-uni 3865  df-sup 7112  df-inf 7113
This theorem is referenced by:  mincom  11655  xrbdtri  11702  nninfctlemfo  12476  lcmcom  12501  lcmass  12522
  Copyright terms: Public domain W3C validator