ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infeq1i Unicode version

Theorem infeq1i 6978
Description: Equality inference for infimum. (Contributed by AV, 2-Sep-2020.)
Hypothesis
Ref Expression
infeq1i.1  |-  B  =  C
Assertion
Ref Expression
infeq1i  |- inf ( B ,  A ,  R
)  = inf ( C ,  A ,  R
)

Proof of Theorem infeq1i
StepHypRef Expression
1 infeq1i.1 . 2  |-  B  =  C
2 infeq1 6976 . 2  |-  ( B  =  C  -> inf ( B ,  A ,  R
)  = inf ( C ,  A ,  R
) )
31, 2ax-mp 5 1  |- inf ( B ,  A ,  R
)  = inf ( C ,  A ,  R
)
Colors of variables: wff set class
Syntax hints:    = wceq 1343  infcinf 6948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-uni 3790  df-sup 6949  df-inf 6950
This theorem is referenced by:  mincom  11170  xrbdtri  11217  lcmcom  11996  lcmass  12017
  Copyright terms: Public domain W3C validator