| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > supisoti | Unicode version | ||
| Description: Image of a supremum under an isomorphism. (Contributed by Jim Kingdon, 26-Nov-2021.) |
| Ref | Expression |
|---|---|
| supiso.1 |
|
| supiso.2 |
|
| supisoex.3 |
|
| supisoti.ti |
|
| Ref | Expression |
|---|---|
| supisoti |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supisoti.ti |
. . . . . . 7
| |
| 2 | 1 | ralrimivva 2612 |
. . . . . 6
|
| 3 | supiso.1 |
. . . . . . 7
| |
| 4 | isoti 7174 |
. . . . . . 7
| |
| 5 | 3, 4 | syl 14 |
. . . . . 6
|
| 6 | 2, 5 | mpbid 147 |
. . . . 5
|
| 7 | 6 | r19.21bi 2618 |
. . . 4
|
| 8 | 7 | r19.21bi 2618 |
. . 3
|
| 9 | 8 | anasss 399 |
. 2
|
| 10 | isof1o 5931 |
. . . 4
| |
| 11 | f1of 5572 |
. . . 4
| |
| 12 | 3, 10, 11 | 3syl 17 |
. . 3
|
| 13 | supisoex.3 |
. . . 4
| |
| 14 | 1, 13 | supclti 7165 |
. . 3
|
| 15 | 12, 14 | ffvelcdmd 5771 |
. 2
|
| 16 | 1, 13 | supubti 7166 |
. . . . . 6
|
| 17 | 16 | ralrimiv 2602 |
. . . . 5
|
| 18 | 1, 13 | suplubti 7167 |
. . . . . . 7
|
| 19 | 18 | expd 258 |
. . . . . 6
|
| 20 | 19 | ralrimiv 2602 |
. . . . 5
|
| 21 | supiso.2 |
. . . . . . 7
| |
| 22 | 3, 21 | supisolem 7175 |
. . . . . 6
|
| 23 | 14, 22 | mpdan 421 |
. . . . 5
|
| 24 | 17, 20, 23 | mpbi2and 949 |
. . . 4
|
| 25 | 24 | simpld 112 |
. . 3
|
| 26 | 25 | r19.21bi 2618 |
. 2
|
| 27 | 24 | simprd 114 |
. . . 4
|
| 28 | 27 | r19.21bi 2618 |
. . 3
|
| 29 | 28 | impr 379 |
. 2
|
| 30 | 9, 15, 26, 29 | eqsuptid 7164 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-isom 5327 df-riota 5954 df-sup 7151 |
| This theorem is referenced by: infisoti 7199 infrenegsupex 9789 infxrnegsupex 11774 |
| Copyright terms: Public domain | W3C validator |