Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > supisoti | Unicode version |
Description: Image of a supremum under an isomorphism. (Contributed by Jim Kingdon, 26-Nov-2021.) |
Ref | Expression |
---|---|
supiso.1 | |
supiso.2 | |
supisoex.3 | |
supisoti.ti |
Ref | Expression |
---|---|
supisoti |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supisoti.ti | . . . . . . 7 | |
2 | 1 | ralrimivva 2557 | . . . . . 6 |
3 | supiso.1 | . . . . . . 7 | |
4 | isoti 6996 | . . . . . . 7 | |
5 | 3, 4 | syl 14 | . . . . . 6 |
6 | 2, 5 | mpbid 147 | . . . . 5 |
7 | 6 | r19.21bi 2563 | . . . 4 |
8 | 7 | r19.21bi 2563 | . . 3 |
9 | 8 | anasss 399 | . 2 |
10 | isof1o 5798 | . . . 4 | |
11 | f1of 5453 | . . . 4 | |
12 | 3, 10, 11 | 3syl 17 | . . 3 |
13 | supisoex.3 | . . . 4 | |
14 | 1, 13 | supclti 6987 | . . 3 |
15 | 12, 14 | ffvelcdmd 5644 | . 2 |
16 | 1, 13 | supubti 6988 | . . . . . 6 |
17 | 16 | ralrimiv 2547 | . . . . 5 |
18 | 1, 13 | suplubti 6989 | . . . . . . 7 |
19 | 18 | expd 258 | . . . . . 6 |
20 | 19 | ralrimiv 2547 | . . . . 5 |
21 | supiso.2 | . . . . . . 7 | |
22 | 3, 21 | supisolem 6997 | . . . . . 6 |
23 | 14, 22 | mpdan 421 | . . . . 5 |
24 | 17, 20, 23 | mpbi2and 943 | . . . 4 |
25 | 24 | simpld 112 | . . 3 |
26 | 25 | r19.21bi 2563 | . 2 |
27 | 24 | simprd 114 | . . . 4 |
28 | 27 | r19.21bi 2563 | . . 3 |
29 | 28 | impr 379 | . 2 |
30 | 9, 15, 26, 29 | eqsuptid 6986 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 104 wb 105 wceq 1353 wcel 2146 wral 2453 wrex 2454 wss 3127 class class class wbr 3998 cima 4623 wf 5204 wf1o 5207 cfv 5208 wiso 5209 csup 6971 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-isom 5217 df-riota 5821 df-sup 6973 |
This theorem is referenced by: infisoti 7021 infrenegsupex 9565 infxrnegsupex 11237 |
Copyright terms: Public domain | W3C validator |