Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > supisoti | Unicode version |
Description: Image of a supremum under an isomorphism. (Contributed by Jim Kingdon, 26-Nov-2021.) |
Ref | Expression |
---|---|
supiso.1 | |
supiso.2 | |
supisoex.3 | |
supisoti.ti |
Ref | Expression |
---|---|
supisoti |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supisoti.ti | . . . . . . 7 | |
2 | 1 | ralrimivva 2548 | . . . . . 6 |
3 | supiso.1 | . . . . . . 7 | |
4 | isoti 6972 | . . . . . . 7 | |
5 | 3, 4 | syl 14 | . . . . . 6 |
6 | 2, 5 | mpbid 146 | . . . . 5 |
7 | 6 | r19.21bi 2554 | . . . 4 |
8 | 7 | r19.21bi 2554 | . . 3 |
9 | 8 | anasss 397 | . 2 |
10 | isof1o 5775 | . . . 4 | |
11 | f1of 5432 | . . . 4 | |
12 | 3, 10, 11 | 3syl 17 | . . 3 |
13 | supisoex.3 | . . . 4 | |
14 | 1, 13 | supclti 6963 | . . 3 |
15 | 12, 14 | ffvelrnd 5621 | . 2 |
16 | 1, 13 | supubti 6964 | . . . . . 6 |
17 | 16 | ralrimiv 2538 | . . . . 5 |
18 | 1, 13 | suplubti 6965 | . . . . . . 7 |
19 | 18 | expd 256 | . . . . . 6 |
20 | 19 | ralrimiv 2538 | . . . . 5 |
21 | supiso.2 | . . . . . . 7 | |
22 | 3, 21 | supisolem 6973 | . . . . . 6 |
23 | 14, 22 | mpdan 418 | . . . . 5 |
24 | 17, 20, 23 | mpbi2and 933 | . . . 4 |
25 | 24 | simpld 111 | . . 3 |
26 | 25 | r19.21bi 2554 | . 2 |
27 | 24 | simprd 113 | . . . 4 |
28 | 27 | r19.21bi 2554 | . . 3 |
29 | 28 | impr 377 | . 2 |
30 | 9, 15, 26, 29 | eqsuptid 6962 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wceq 1343 wcel 2136 wral 2444 wrex 2445 wss 3116 class class class wbr 3982 cima 4607 wf 5184 wf1o 5187 cfv 5188 wiso 5189 csup 6947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-isom 5197 df-riota 5798 df-sup 6949 |
This theorem is referenced by: infisoti 6997 infrenegsupex 9532 infxrnegsupex 11204 |
Copyright terms: Public domain | W3C validator |