ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  supisoti Unicode version

Theorem supisoti 6999
Description: Image of a supremum under an isomorphism. (Contributed by Jim Kingdon, 26-Nov-2021.)
Hypotheses
Ref Expression
supiso.1  |-  ( ph  ->  F  Isom  R ,  S  ( A ,  B ) )
supiso.2  |-  ( ph  ->  C  C_  A )
supisoex.3  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  C  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  C  y R z ) ) )
supisoti.ti  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
Assertion
Ref Expression
supisoti  |-  ( ph  ->  sup ( ( F
" C ) ,  B ,  S )  =  ( F `  sup ( C ,  A ,  R ) ) )
Distinct variable groups:    v, u, x, y, z, A    u, C, v, x, y, z    ph, u    u, F, v, x, y, z    u, R, x, y, z    u, S, v, x, y, z   
u, B, v, x, y, z    v, R    ph, v, x
Allowed substitution hints:    ph( y, z)

Proof of Theorem supisoti
Dummy variables  w  j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 supisoti.ti . . . . . . 7  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
21ralrimivva 2557 . . . . . 6  |-  ( ph  ->  A. u  e.  A  A. v  e.  A  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) ) )
3 supiso.1 . . . . . . 7  |-  ( ph  ->  F  Isom  R ,  S  ( A ,  B ) )
4 isoti 6996 . . . . . . 7  |-  ( F 
Isom  R ,  S  ( A ,  B )  ->  ( A. u  e.  A  A. v  e.  A  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) )  <->  A. u  e.  B  A. v  e.  B  ( u  =  v  <->  ( -.  u S v  /\  -.  v S u ) ) ) )
53, 4syl 14 . . . . . 6  |-  ( ph  ->  ( A. u  e.  A  A. v  e.  A  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) )  <->  A. u  e.  B  A. v  e.  B  ( u  =  v  <->  ( -.  u S v  /\  -.  v S u ) ) ) )
62, 5mpbid 147 . . . . 5  |-  ( ph  ->  A. u  e.  B  A. v  e.  B  ( u  =  v  <->  ( -.  u S v  /\  -.  v S u ) ) )
76r19.21bi 2563 . . . 4  |-  ( (
ph  /\  u  e.  B )  ->  A. v  e.  B  ( u  =  v  <->  ( -.  u S v  /\  -.  v S u ) ) )
87r19.21bi 2563 . . 3  |-  ( ( ( ph  /\  u  e.  B )  /\  v  e.  B )  ->  (
u  =  v  <->  ( -.  u S v  /\  -.  v S u ) ) )
98anasss 399 . 2  |-  ( (
ph  /\  ( u  e.  B  /\  v  e.  B ) )  -> 
( u  =  v  <-> 
( -.  u S v  /\  -.  v S u ) ) )
10 isof1o 5798 . . . 4  |-  ( F 
Isom  R ,  S  ( A ,  B )  ->  F : A -1-1-onto-> B
)
11 f1of 5453 . . . 4  |-  ( F : A -1-1-onto-> B  ->  F : A
--> B )
123, 10, 113syl 17 . . 3  |-  ( ph  ->  F : A --> B )
13 supisoex.3 . . . 4  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  C  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  C  y R z ) ) )
141, 13supclti 6987 . . 3  |-  ( ph  ->  sup ( C ,  A ,  R )  e.  A )
1512, 14ffvelcdmd 5644 . 2  |-  ( ph  ->  ( F `  sup ( C ,  A ,  R ) )  e.  B )
161, 13supubti 6988 . . . . . 6  |-  ( ph  ->  ( j  e.  C  ->  -.  sup ( C ,  A ,  R
) R j ) )
1716ralrimiv 2547 . . . . 5  |-  ( ph  ->  A. j  e.  C  -.  sup ( C ,  A ,  R ) R j )
181, 13suplubti 6989 . . . . . . 7  |-  ( ph  ->  ( ( j  e.  A  /\  j R sup ( C ,  A ,  R )
)  ->  E. z  e.  C  j R
z ) )
1918expd 258 . . . . . 6  |-  ( ph  ->  ( j  e.  A  ->  ( j R sup ( C ,  A ,  R )  ->  E. z  e.  C  j R
z ) ) )
2019ralrimiv 2547 . . . . 5  |-  ( ph  ->  A. j  e.  A  ( j R sup ( C ,  A ,  R )  ->  E. z  e.  C  j R
z ) )
21 supiso.2 . . . . . . 7  |-  ( ph  ->  C  C_  A )
223, 21supisolem 6997 . . . . . 6  |-  ( (
ph  /\  sup ( C ,  A ,  R )  e.  A
)  ->  ( ( A. j  e.  C  -.  sup ( C ,  A ,  R ) R j  /\  A. j  e.  A  (
j R sup ( C ,  A ,  R )  ->  E. z  e.  C  j R
z ) )  <->  ( A. w  e.  ( F " C )  -.  ( F `  sup ( C ,  A ,  R
) ) S w  /\  A. w  e.  B  ( w S ( F `  sup ( C ,  A ,  R ) )  ->  E. k  e.  ( F " C ) w S k ) ) ) )
2314, 22mpdan 421 . . . . 5  |-  ( ph  ->  ( ( A. j  e.  C  -.  sup ( C ,  A ,  R ) R j  /\  A. j  e.  A  ( j R sup ( C ,  A ,  R )  ->  E. z  e.  C  j R z ) )  <-> 
( A. w  e.  ( F " C
)  -.  ( F `
 sup ( C ,  A ,  R
) ) S w  /\  A. w  e.  B  ( w S ( F `  sup ( C ,  A ,  R ) )  ->  E. k  e.  ( F " C ) w S k ) ) ) )
2417, 20, 23mpbi2and 943 . . . 4  |-  ( ph  ->  ( A. w  e.  ( F " C
)  -.  ( F `
 sup ( C ,  A ,  R
) ) S w  /\  A. w  e.  B  ( w S ( F `  sup ( C ,  A ,  R ) )  ->  E. k  e.  ( F " C ) w S k ) ) )
2524simpld 112 . . 3  |-  ( ph  ->  A. w  e.  ( F " C )  -.  ( F `  sup ( C ,  A ,  R ) ) S w )
2625r19.21bi 2563 . 2  |-  ( (
ph  /\  w  e.  ( F " C ) )  ->  -.  ( F `  sup ( C ,  A ,  R
) ) S w )
2724simprd 114 . . . 4  |-  ( ph  ->  A. w  e.  B  ( w S ( F `  sup ( C ,  A ,  R ) )  ->  E. k  e.  ( F " C ) w S k ) )
2827r19.21bi 2563 . . 3  |-  ( (
ph  /\  w  e.  B )  ->  (
w S ( F `
 sup ( C ,  A ,  R
) )  ->  E. k  e.  ( F " C
) w S k ) )
2928impr 379 . 2  |-  ( (
ph  /\  ( w  e.  B  /\  w S ( F `  sup ( C ,  A ,  R ) ) ) )  ->  E. k  e.  ( F " C
) w S k )
309, 15, 26, 29eqsuptid 6986 1  |-  ( ph  ->  sup ( ( F
" C ) ,  B ,  S )  =  ( F `  sup ( C ,  A ,  R ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2146   A.wral 2453   E.wrex 2454    C_ wss 3127   class class class wbr 3998   "cima 4623   -->wf 5204   -1-1-onto->wf1o 5207   ` cfv 5208    Isom wiso 5209   supcsup 6971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-isom 5217  df-riota 5821  df-sup 6973
This theorem is referenced by:  infisoti  7021  infrenegsupex  9565  infxrnegsupex  11237
  Copyright terms: Public domain W3C validator