ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  supisoti Unicode version

Theorem supisoti 6975
Description: Image of a supremum under an isomorphism. (Contributed by Jim Kingdon, 26-Nov-2021.)
Hypotheses
Ref Expression
supiso.1  |-  ( ph  ->  F  Isom  R ,  S  ( A ,  B ) )
supiso.2  |-  ( ph  ->  C  C_  A )
supisoex.3  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  C  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  C  y R z ) ) )
supisoti.ti  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
Assertion
Ref Expression
supisoti  |-  ( ph  ->  sup ( ( F
" C ) ,  B ,  S )  =  ( F `  sup ( C ,  A ,  R ) ) )
Distinct variable groups:    v, u, x, y, z, A    u, C, v, x, y, z    ph, u    u, F, v, x, y, z    u, R, x, y, z    u, S, v, x, y, z   
u, B, v, x, y, z    v, R    ph, v, x
Allowed substitution hints:    ph( y, z)

Proof of Theorem supisoti
Dummy variables  w  j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 supisoti.ti . . . . . . 7  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
21ralrimivva 2548 . . . . . 6  |-  ( ph  ->  A. u  e.  A  A. v  e.  A  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) ) )
3 supiso.1 . . . . . . 7  |-  ( ph  ->  F  Isom  R ,  S  ( A ,  B ) )
4 isoti 6972 . . . . . . 7  |-  ( F 
Isom  R ,  S  ( A ,  B )  ->  ( A. u  e.  A  A. v  e.  A  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) )  <->  A. u  e.  B  A. v  e.  B  ( u  =  v  <->  ( -.  u S v  /\  -.  v S u ) ) ) )
53, 4syl 14 . . . . . 6  |-  ( ph  ->  ( A. u  e.  A  A. v  e.  A  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) )  <->  A. u  e.  B  A. v  e.  B  ( u  =  v  <->  ( -.  u S v  /\  -.  v S u ) ) ) )
62, 5mpbid 146 . . . . 5  |-  ( ph  ->  A. u  e.  B  A. v  e.  B  ( u  =  v  <->  ( -.  u S v  /\  -.  v S u ) ) )
76r19.21bi 2554 . . . 4  |-  ( (
ph  /\  u  e.  B )  ->  A. v  e.  B  ( u  =  v  <->  ( -.  u S v  /\  -.  v S u ) ) )
87r19.21bi 2554 . . 3  |-  ( ( ( ph  /\  u  e.  B )  /\  v  e.  B )  ->  (
u  =  v  <->  ( -.  u S v  /\  -.  v S u ) ) )
98anasss 397 . 2  |-  ( (
ph  /\  ( u  e.  B  /\  v  e.  B ) )  -> 
( u  =  v  <-> 
( -.  u S v  /\  -.  v S u ) ) )
10 isof1o 5775 . . . 4  |-  ( F 
Isom  R ,  S  ( A ,  B )  ->  F : A -1-1-onto-> B
)
11 f1of 5432 . . . 4  |-  ( F : A -1-1-onto-> B  ->  F : A
--> B )
123, 10, 113syl 17 . . 3  |-  ( ph  ->  F : A --> B )
13 supisoex.3 . . . 4  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  C  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  C  y R z ) ) )
141, 13supclti 6963 . . 3  |-  ( ph  ->  sup ( C ,  A ,  R )  e.  A )
1512, 14ffvelrnd 5621 . 2  |-  ( ph  ->  ( F `  sup ( C ,  A ,  R ) )  e.  B )
161, 13supubti 6964 . . . . . 6  |-  ( ph  ->  ( j  e.  C  ->  -.  sup ( C ,  A ,  R
) R j ) )
1716ralrimiv 2538 . . . . 5  |-  ( ph  ->  A. j  e.  C  -.  sup ( C ,  A ,  R ) R j )
181, 13suplubti 6965 . . . . . . 7  |-  ( ph  ->  ( ( j  e.  A  /\  j R sup ( C ,  A ,  R )
)  ->  E. z  e.  C  j R
z ) )
1918expd 256 . . . . . 6  |-  ( ph  ->  ( j  e.  A  ->  ( j R sup ( C ,  A ,  R )  ->  E. z  e.  C  j R
z ) ) )
2019ralrimiv 2538 . . . . 5  |-  ( ph  ->  A. j  e.  A  ( j R sup ( C ,  A ,  R )  ->  E. z  e.  C  j R
z ) )
21 supiso.2 . . . . . . 7  |-  ( ph  ->  C  C_  A )
223, 21supisolem 6973 . . . . . 6  |-  ( (
ph  /\  sup ( C ,  A ,  R )  e.  A
)  ->  ( ( A. j  e.  C  -.  sup ( C ,  A ,  R ) R j  /\  A. j  e.  A  (
j R sup ( C ,  A ,  R )  ->  E. z  e.  C  j R
z ) )  <->  ( A. w  e.  ( F " C )  -.  ( F `  sup ( C ,  A ,  R
) ) S w  /\  A. w  e.  B  ( w S ( F `  sup ( C ,  A ,  R ) )  ->  E. k  e.  ( F " C ) w S k ) ) ) )
2314, 22mpdan 418 . . . . 5  |-  ( ph  ->  ( ( A. j  e.  C  -.  sup ( C ,  A ,  R ) R j  /\  A. j  e.  A  ( j R sup ( C ,  A ,  R )  ->  E. z  e.  C  j R z ) )  <-> 
( A. w  e.  ( F " C
)  -.  ( F `
 sup ( C ,  A ,  R
) ) S w  /\  A. w  e.  B  ( w S ( F `  sup ( C ,  A ,  R ) )  ->  E. k  e.  ( F " C ) w S k ) ) ) )
2417, 20, 23mpbi2and 933 . . . 4  |-  ( ph  ->  ( A. w  e.  ( F " C
)  -.  ( F `
 sup ( C ,  A ,  R
) ) S w  /\  A. w  e.  B  ( w S ( F `  sup ( C ,  A ,  R ) )  ->  E. k  e.  ( F " C ) w S k ) ) )
2524simpld 111 . . 3  |-  ( ph  ->  A. w  e.  ( F " C )  -.  ( F `  sup ( C ,  A ,  R ) ) S w )
2625r19.21bi 2554 . 2  |-  ( (
ph  /\  w  e.  ( F " C ) )  ->  -.  ( F `  sup ( C ,  A ,  R
) ) S w )
2724simprd 113 . . . 4  |-  ( ph  ->  A. w  e.  B  ( w S ( F `  sup ( C ,  A ,  R ) )  ->  E. k  e.  ( F " C ) w S k ) )
2827r19.21bi 2554 . . 3  |-  ( (
ph  /\  w  e.  B )  ->  (
w S ( F `
 sup ( C ,  A ,  R
) )  ->  E. k  e.  ( F " C
) w S k ) )
2928impr 377 . 2  |-  ( (
ph  /\  ( w  e.  B  /\  w S ( F `  sup ( C ,  A ,  R ) ) ) )  ->  E. k  e.  ( F " C
) w S k )
309, 15, 26, 29eqsuptid 6962 1  |-  ( ph  ->  sup ( ( F
" C ) ,  B ,  S )  =  ( F `  sup ( C ,  A ,  R ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   A.wral 2444   E.wrex 2445    C_ wss 3116   class class class wbr 3982   "cima 4607   -->wf 5184   -1-1-onto->wf1o 5187   ` cfv 5188    Isom wiso 5189   supcsup 6947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-sup 6949
This theorem is referenced by:  infisoti  6997  infrenegsupex  9532  infxrnegsupex  11204
  Copyright terms: Public domain W3C validator