ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  supisoti Unicode version

Theorem supisoti 7085
Description: Image of a supremum under an isomorphism. (Contributed by Jim Kingdon, 26-Nov-2021.)
Hypotheses
Ref Expression
supiso.1  |-  ( ph  ->  F  Isom  R ,  S  ( A ,  B ) )
supiso.2  |-  ( ph  ->  C  C_  A )
supisoex.3  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  C  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  C  y R z ) ) )
supisoti.ti  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
Assertion
Ref Expression
supisoti  |-  ( ph  ->  sup ( ( F
" C ) ,  B ,  S )  =  ( F `  sup ( C ,  A ,  R ) ) )
Distinct variable groups:    v, u, x, y, z, A    u, C, v, x, y, z    ph, u    u, F, v, x, y, z    u, R, x, y, z    u, S, v, x, y, z   
u, B, v, x, y, z    v, R    ph, v, x
Allowed substitution hints:    ph( y, z)

Proof of Theorem supisoti
Dummy variables  w  j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 supisoti.ti . . . . . . 7  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
21ralrimivva 2579 . . . . . 6  |-  ( ph  ->  A. u  e.  A  A. v  e.  A  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) ) )
3 supiso.1 . . . . . . 7  |-  ( ph  ->  F  Isom  R ,  S  ( A ,  B ) )
4 isoti 7082 . . . . . . 7  |-  ( F 
Isom  R ,  S  ( A ,  B )  ->  ( A. u  e.  A  A. v  e.  A  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) )  <->  A. u  e.  B  A. v  e.  B  ( u  =  v  <->  ( -.  u S v  /\  -.  v S u ) ) ) )
53, 4syl 14 . . . . . 6  |-  ( ph  ->  ( A. u  e.  A  A. v  e.  A  ( u  =  v  <->  ( -.  u R v  /\  -.  v R u ) )  <->  A. u  e.  B  A. v  e.  B  ( u  =  v  <->  ( -.  u S v  /\  -.  v S u ) ) ) )
62, 5mpbid 147 . . . . 5  |-  ( ph  ->  A. u  e.  B  A. v  e.  B  ( u  =  v  <->  ( -.  u S v  /\  -.  v S u ) ) )
76r19.21bi 2585 . . . 4  |-  ( (
ph  /\  u  e.  B )  ->  A. v  e.  B  ( u  =  v  <->  ( -.  u S v  /\  -.  v S u ) ) )
87r19.21bi 2585 . . 3  |-  ( ( ( ph  /\  u  e.  B )  /\  v  e.  B )  ->  (
u  =  v  <->  ( -.  u S v  /\  -.  v S u ) ) )
98anasss 399 . 2  |-  ( (
ph  /\  ( u  e.  B  /\  v  e.  B ) )  -> 
( u  =  v  <-> 
( -.  u S v  /\  -.  v S u ) ) )
10 isof1o 5857 . . . 4  |-  ( F 
Isom  R ,  S  ( A ,  B )  ->  F : A -1-1-onto-> B
)
11 f1of 5507 . . . 4  |-  ( F : A -1-1-onto-> B  ->  F : A
--> B )
123, 10, 113syl 17 . . 3  |-  ( ph  ->  F : A --> B )
13 supisoex.3 . . . 4  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  C  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  C  y R z ) ) )
141, 13supclti 7073 . . 3  |-  ( ph  ->  sup ( C ,  A ,  R )  e.  A )
1512, 14ffvelcdmd 5701 . 2  |-  ( ph  ->  ( F `  sup ( C ,  A ,  R ) )  e.  B )
161, 13supubti 7074 . . . . . 6  |-  ( ph  ->  ( j  e.  C  ->  -.  sup ( C ,  A ,  R
) R j ) )
1716ralrimiv 2569 . . . . 5  |-  ( ph  ->  A. j  e.  C  -.  sup ( C ,  A ,  R ) R j )
181, 13suplubti 7075 . . . . . . 7  |-  ( ph  ->  ( ( j  e.  A  /\  j R sup ( C ,  A ,  R )
)  ->  E. z  e.  C  j R
z ) )
1918expd 258 . . . . . 6  |-  ( ph  ->  ( j  e.  A  ->  ( j R sup ( C ,  A ,  R )  ->  E. z  e.  C  j R
z ) ) )
2019ralrimiv 2569 . . . . 5  |-  ( ph  ->  A. j  e.  A  ( j R sup ( C ,  A ,  R )  ->  E. z  e.  C  j R
z ) )
21 supiso.2 . . . . . . 7  |-  ( ph  ->  C  C_  A )
223, 21supisolem 7083 . . . . . 6  |-  ( (
ph  /\  sup ( C ,  A ,  R )  e.  A
)  ->  ( ( A. j  e.  C  -.  sup ( C ,  A ,  R ) R j  /\  A. j  e.  A  (
j R sup ( C ,  A ,  R )  ->  E. z  e.  C  j R
z ) )  <->  ( A. w  e.  ( F " C )  -.  ( F `  sup ( C ,  A ,  R
) ) S w  /\  A. w  e.  B  ( w S ( F `  sup ( C ,  A ,  R ) )  ->  E. k  e.  ( F " C ) w S k ) ) ) )
2314, 22mpdan 421 . . . . 5  |-  ( ph  ->  ( ( A. j  e.  C  -.  sup ( C ,  A ,  R ) R j  /\  A. j  e.  A  ( j R sup ( C ,  A ,  R )  ->  E. z  e.  C  j R z ) )  <-> 
( A. w  e.  ( F " C
)  -.  ( F `
 sup ( C ,  A ,  R
) ) S w  /\  A. w  e.  B  ( w S ( F `  sup ( C ,  A ,  R ) )  ->  E. k  e.  ( F " C ) w S k ) ) ) )
2417, 20, 23mpbi2and 945 . . . 4  |-  ( ph  ->  ( A. w  e.  ( F " C
)  -.  ( F `
 sup ( C ,  A ,  R
) ) S w  /\  A. w  e.  B  ( w S ( F `  sup ( C ,  A ,  R ) )  ->  E. k  e.  ( F " C ) w S k ) ) )
2524simpld 112 . . 3  |-  ( ph  ->  A. w  e.  ( F " C )  -.  ( F `  sup ( C ,  A ,  R ) ) S w )
2625r19.21bi 2585 . 2  |-  ( (
ph  /\  w  e.  ( F " C ) )  ->  -.  ( F `  sup ( C ,  A ,  R
) ) S w )
2724simprd 114 . . . 4  |-  ( ph  ->  A. w  e.  B  ( w S ( F `  sup ( C ,  A ,  R ) )  ->  E. k  e.  ( F " C ) w S k ) )
2827r19.21bi 2585 . . 3  |-  ( (
ph  /\  w  e.  B )  ->  (
w S ( F `
 sup ( C ,  A ,  R
) )  ->  E. k  e.  ( F " C
) w S k ) )
2928impr 379 . 2  |-  ( (
ph  /\  ( w  e.  B  /\  w S ( F `  sup ( C ,  A ,  R ) ) ) )  ->  E. k  e.  ( F " C
) w S k )
309, 15, 26, 29eqsuptid 7072 1  |-  ( ph  ->  sup ( ( F
" C ) ,  B ,  S )  =  ( F `  sup ( C ,  A ,  R ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   A.wral 2475   E.wrex 2476    C_ wss 3157   class class class wbr 4034   "cima 4667   -->wf 5255   -1-1-onto->wf1o 5258   ` cfv 5259    Isom wiso 5260   supcsup 7057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-sup 7059
This theorem is referenced by:  infisoti  7107  infrenegsupex  9685  infxrnegsupex  11445
  Copyright terms: Public domain W3C validator