ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infeq2 Unicode version

Theorem infeq2 6867
Description: Equality theorem for infimum. (Contributed by AV, 2-Sep-2020.)
Assertion
Ref Expression
infeq2  |-  ( B  =  C  -> inf ( A ,  B ,  R
)  = inf ( A ,  C ,  R
) )

Proof of Theorem infeq2
StepHypRef Expression
1 supeq2 6842 . 2  |-  ( B  =  C  ->  sup ( A ,  B ,  `' R )  =  sup ( A ,  C ,  `' R ) )
2 df-inf 6838 . 2  |- inf ( A ,  B ,  R
)  =  sup ( A ,  B ,  `' R )
3 df-inf 6838 . 2  |- inf ( A ,  C ,  R
)  =  sup ( A ,  C ,  `' R )
41, 2, 33eqtr4g 2173 1  |-  ( B  =  C  -> inf ( A ,  B ,  R
)  = inf ( A ,  C ,  R
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1314   `'ccnv 4506   supcsup 6835  infcinf 6836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097
This theorem depends on definitions:  df-bi 116  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ral 2396  df-rex 2397  df-rab 2400  df-uni 3705  df-sup 6837  df-inf 6838
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator