![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > infeq2 | GIF version |
Description: Equality theorem for infimum. (Contributed by AV, 2-Sep-2020.) |
Ref | Expression |
---|---|
infeq2 | ⊢ (𝐵 = 𝐶 → inf(𝐴, 𝐵, 𝑅) = inf(𝐴, 𝐶, 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supeq2 7048 | . 2 ⊢ (𝐵 = 𝐶 → sup(𝐴, 𝐵, ◡𝑅) = sup(𝐴, 𝐶, ◡𝑅)) | |
2 | df-inf 7044 | . 2 ⊢ inf(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, ◡𝑅) | |
3 | df-inf 7044 | . 2 ⊢ inf(𝐴, 𝐶, 𝑅) = sup(𝐴, 𝐶, ◡𝑅) | |
4 | 1, 2, 3 | 3eqtr4g 2251 | 1 ⊢ (𝐵 = 𝐶 → inf(𝐴, 𝐵, 𝑅) = inf(𝐴, 𝐶, 𝑅)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ◡ccnv 4658 supcsup 7041 infcinf 7042 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-uni 3836 df-sup 7043 df-inf 7044 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |