Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  infeq3 Unicode version

Theorem infeq3 6895
 Description: Equality theorem for infimum. (Contributed by AV, 2-Sep-2020.)
Assertion
Ref Expression
infeq3 inf inf

Proof of Theorem infeq3
StepHypRef Expression
1 cnveq 4708 . . 3
2 supeq3 6870 . . 3
31, 2syl 14 . 2
4 df-inf 6865 . 2 inf
5 df-inf 6865 . 2 inf
63, 4, 53eqtr4g 2195 1 inf inf
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1331  ccnv 4533  csup 6862  infcinf 6863 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119 This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-rab 2423  df-in 3072  df-ss 3079  df-uni 3732  df-br 3925  df-opab 3985  df-cnv 4542  df-sup 6864  df-inf 6865 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator