ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infeq3 Unicode version

Theorem infeq3 7182
Description: Equality theorem for infimum. (Contributed by AV, 2-Sep-2020.)
Assertion
Ref Expression
infeq3  |-  ( R  =  S  -> inf ( A ,  B ,  R
)  = inf ( A ,  B ,  S
) )

Proof of Theorem infeq3
StepHypRef Expression
1 cnveq 4896 . . 3  |-  ( R  =  S  ->  `' R  =  `' S
)
2 supeq3 7157 . . 3  |-  ( `' R  =  `' S  ->  sup ( A ,  B ,  `' R
)  =  sup ( A ,  B ,  `' S ) )
31, 2syl 14 . 2  |-  ( R  =  S  ->  sup ( A ,  B ,  `' R )  =  sup ( A ,  B ,  `' S ) )
4 df-inf 7152 . 2  |- inf ( A ,  B ,  R
)  =  sup ( A ,  B ,  `' R )
5 df-inf 7152 . 2  |- inf ( A ,  B ,  S
)  =  sup ( A ,  B ,  `' S )
63, 4, 53eqtr4g 2287 1  |-  ( R  =  S  -> inf ( A ,  B ,  R
)  = inf ( A ,  B ,  S
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395   `'ccnv 4718   supcsup 7149  infcinf 7150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-in 3203  df-ss 3210  df-uni 3889  df-br 4084  df-opab 4146  df-cnv 4727  df-sup 7151  df-inf 7152
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator