ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infeq3 Unicode version

Theorem infeq3 7074
Description: Equality theorem for infimum. (Contributed by AV, 2-Sep-2020.)
Assertion
Ref Expression
infeq3  |-  ( R  =  S  -> inf ( A ,  B ,  R
)  = inf ( A ,  B ,  S
) )

Proof of Theorem infeq3
StepHypRef Expression
1 cnveq 4836 . . 3  |-  ( R  =  S  ->  `' R  =  `' S
)
2 supeq3 7049 . . 3  |-  ( `' R  =  `' S  ->  sup ( A ,  B ,  `' R
)  =  sup ( A ,  B ,  `' S ) )
31, 2syl 14 . 2  |-  ( R  =  S  ->  sup ( A ,  B ,  `' R )  =  sup ( A ,  B ,  `' S ) )
4 df-inf 7044 . 2  |- inf ( A ,  B ,  R
)  =  sup ( A ,  B ,  `' R )
5 df-inf 7044 . 2  |- inf ( A ,  B ,  S
)  =  sup ( A ,  B ,  `' S )
63, 4, 53eqtr4g 2251 1  |-  ( R  =  S  -> inf ( A ,  B ,  R
)  = inf ( A ,  B ,  S
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   `'ccnv 4658   supcsup 7041  infcinf 7042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-in 3159  df-ss 3166  df-uni 3836  df-br 4030  df-opab 4091  df-cnv 4667  df-sup 7043  df-inf 7044
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator