Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > supeq2 | Unicode version |
Description: Equality theorem for supremum. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
supeq2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeq 2718 | . . . 4 | |
2 | raleq 2661 | . . . . . 6 | |
3 | 2 | anbi2d 460 | . . . . 5 |
4 | 3 | rabbidv 2715 | . . . 4 |
5 | 1, 4 | eqtrd 2198 | . . 3 |
6 | 5 | unieqd 3800 | . 2 |
7 | df-sup 6949 | . 2 | |
8 | df-sup 6949 | . 2 | |
9 | 6, 7, 8 | 3eqtr4g 2224 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wceq 1343 wral 2444 wrex 2445 crab 2448 cuni 3789 class class class wbr 3982 csup 6947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-uni 3790 df-sup 6949 |
This theorem is referenced by: infeq2 6979 |
Copyright terms: Public domain | W3C validator |