ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  supeq2 Unicode version

Theorem supeq2 7091
Description: Equality theorem for supremum. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
supeq2  |-  ( B  =  C  ->  sup ( A ,  B ,  R )  =  sup ( A ,  C ,  R ) )

Proof of Theorem supeq2
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rabeq 2764 . . . 4  |-  ( B  =  C  ->  { x  e.  B  |  ( A. y  e.  A  -.  x R y  /\  A. y  e.  B  ( y R x  ->  E. z  e.  A  y R z ) ) }  =  { x  e.  C  |  ( A. y  e.  A  -.  x R y  /\  A. y  e.  B  ( y R x  ->  E. z  e.  A  y R z ) ) } )
2 raleq 2702 . . . . . 6  |-  ( B  =  C  ->  ( A. y  e.  B  ( y R x  ->  E. z  e.  A  y R z )  <->  A. y  e.  C  ( y R x  ->  E. z  e.  A  y R
z ) ) )
32anbi2d 464 . . . . 5  |-  ( B  =  C  ->  (
( A. y  e.  A  -.  x R y  /\  A. y  e.  B  ( y R x  ->  E. z  e.  A  y R
z ) )  <->  ( A. y  e.  A  -.  x R y  /\  A. y  e.  C  (
y R x  ->  E. z  e.  A  y R z ) ) ) )
43rabbidv 2761 . . . 4  |-  ( B  =  C  ->  { x  e.  C  |  ( A. y  e.  A  -.  x R y  /\  A. y  e.  B  ( y R x  ->  E. z  e.  A  y R z ) ) }  =  { x  e.  C  |  ( A. y  e.  A  -.  x R y  /\  A. y  e.  C  ( y R x  ->  E. z  e.  A  y R z ) ) } )
51, 4eqtrd 2238 . . 3  |-  ( B  =  C  ->  { x  e.  B  |  ( A. y  e.  A  -.  x R y  /\  A. y  e.  B  ( y R x  ->  E. z  e.  A  y R z ) ) }  =  { x  e.  C  |  ( A. y  e.  A  -.  x R y  /\  A. y  e.  C  ( y R x  ->  E. z  e.  A  y R z ) ) } )
65unieqd 3861 . 2  |-  ( B  =  C  ->  U. {
x  e.  B  | 
( A. y  e.  A  -.  x R y  /\  A. y  e.  B  ( y R x  ->  E. z  e.  A  y R
z ) ) }  =  U. { x  e.  C  |  ( A. y  e.  A  -.  x R y  /\  A. y  e.  C  ( y R x  ->  E. z  e.  A  y R z ) ) } )
7 df-sup 7086 . 2  |-  sup ( A ,  B ,  R )  =  U. { x  e.  B  |  ( A. y  e.  A  -.  x R y  /\  A. y  e.  B  (
y R x  ->  E. z  e.  A  y R z ) ) }
8 df-sup 7086 . 2  |-  sup ( A ,  C ,  R )  =  U. { x  e.  C  |  ( A. y  e.  A  -.  x R y  /\  A. y  e.  C  (
y R x  ->  E. z  e.  A  y R z ) ) }
96, 7, 83eqtr4g 2263 1  |-  ( B  =  C  ->  sup ( A ,  B ,  R )  =  sup ( A ,  C ,  R ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1373   A.wral 2484   E.wrex 2485   {crab 2488   U.cuni 3850   class class class wbr 4044   supcsup 7084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-uni 3851  df-sup 7086
This theorem is referenced by:  infeq2  7116
  Copyright terms: Public domain W3C validator