ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseqin2 Unicode version

Theorem sseqin2 3378
Description: A relationship between subclass and intersection. Similar to Exercise 9 of [TakeutiZaring] p. 18. (Contributed by NM, 17-May-1994.)
Assertion
Ref Expression
sseqin2  |-  ( A 
C_  B  <->  ( B  i^i  A )  =  A )

Proof of Theorem sseqin2
StepHypRef Expression
1 dfss1 3363 1  |-  ( A 
C_  B  <->  ( B  i^i  A )  =  A )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1364    i^i cin 3152    C_ wss 3153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-in 3159  df-ss 3166
This theorem is referenced by:  dfss4st  3392  resabs1  4971  mptimass  5018  rescnvcnv  5128  frecfnom  6454  fiintim  6985  nn0supp  9292  uzin  9625  iooval2  9981  fzval2  10077  suprzubdc  12089  dfphi2  12358  ressabsg  12694  resttopon  14339  restabs  14343  restopnb  14349  txcnmpt  14441
  Copyright terms: Public domain W3C validator