ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseqin2 Unicode version

Theorem sseqin2 3369
Description: A relationship between subclass and intersection. Similar to Exercise 9 of [TakeutiZaring] p. 18. (Contributed by NM, 17-May-1994.)
Assertion
Ref Expression
sseqin2  |-  ( A 
C_  B  <->  ( B  i^i  A )  =  A )

Proof of Theorem sseqin2
StepHypRef Expression
1 dfss1 3354 1  |-  ( A 
C_  B  <->  ( B  i^i  A )  =  A )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1364    i^i cin 3143    C_ wss 3144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-v 2754  df-in 3150  df-ss 3157
This theorem is referenced by:  dfss4st  3383  resabs1  4954  rescnvcnv  5109  frecfnom  6426  fiintim  6957  nn0supp  9258  uzin  9590  iooval2  9945  fzval2  10041  suprzubdc  11985  dfphi2  12252  ressabsg  12588  resttopon  14128  restabs  14132  restopnb  14138  txcnmpt  14230
  Copyright terms: Public domain W3C validator