ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseqin2 Unicode version

Theorem sseqin2 3259
Description: A relationship between subclass and intersection. Similar to Exercise 9 of [TakeutiZaring] p. 18. (Contributed by NM, 17-May-1994.)
Assertion
Ref Expression
sseqin2  |-  ( A 
C_  B  <->  ( B  i^i  A )  =  A )

Proof of Theorem sseqin2
StepHypRef Expression
1 dfss1 3244 1  |-  ( A 
C_  B  <->  ( B  i^i  A )  =  A )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    = wceq 1312    i^i cin 3034    C_ wss 3035
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095
This theorem depends on definitions:  df-bi 116  df-tru 1315  df-nf 1418  df-sb 1717  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-v 2657  df-in 3041  df-ss 3048
This theorem is referenced by:  dfss4st  3273  resabs1  4804  rescnvcnv  4957  frecfnom  6250  fiintim  6768  nn0supp  8927  uzin  9254  iooval2  9585  fzval2  9680  dfphi2  11735  resttopon  12177  restabs  12181  restopnb  12187  txcnmpt  12278
  Copyright terms: Public domain W3C validator