ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inindir GIF version

Theorem inindir 3355
Description: Intersection distributes over itself. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
inindir ((𝐴𝐵) ∩ 𝐶) = ((𝐴𝐶) ∩ (𝐵𝐶))

Proof of Theorem inindir
StepHypRef Expression
1 inidm 3346 . . 3 (𝐶𝐶) = 𝐶
21ineq2i 3335 . 2 ((𝐴𝐵) ∩ (𝐶𝐶)) = ((𝐴𝐵) ∩ 𝐶)
3 in4 3353 . 2 ((𝐴𝐵) ∩ (𝐶𝐶)) = ((𝐴𝐶) ∩ (𝐵𝐶))
42, 3eqtr3i 2200 1 ((𝐴𝐵) ∩ 𝐶) = ((𝐴𝐶) ∩ (𝐵𝐶))
Colors of variables: wff set class
Syntax hints:   = wceq 1353  cin 3130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-in 3137
This theorem is referenced by:  difindir  3392  resindir  4925  restbasg  13808
  Copyright terms: Public domain W3C validator