ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inssddif Unicode version

Theorem inssddif 3414
Description: Intersection of two classes and class difference. In classical logic, such as Exercise 4.10(q) of [Mendelson] p. 231, this is an equality rather than subset. (Contributed by Jim Kingdon, 26-Jul-2018.)
Assertion
Ref Expression
inssddif  |-  ( A  i^i  B )  C_  ( A  \  ( A  \  B ) )

Proof of Theorem inssddif
StepHypRef Expression
1 inss1 3393 . . 3  |-  ( A  i^i  B )  C_  A
2 ssddif 3407 . . 3  |-  ( ( A  i^i  B ) 
C_  A  <->  ( A  i^i  B )  C_  ( A  \  ( A  \ 
( A  i^i  B
) ) ) )
31, 2mpbi 145 . 2  |-  ( A  i^i  B )  C_  ( A  \  ( A  \  ( A  i^i  B ) ) )
4 difin 3410 . . 3  |-  ( A 
\  ( A  i^i  B ) )  =  ( A  \  B )
54difeq2i 3288 . 2  |-  ( A 
\  ( A  \ 
( A  i^i  B
) ) )  =  ( A  \  ( A  \  B ) )
63, 5sseqtri 3227 1  |-  ( A  i^i  B )  C_  ( A  \  ( A  \  B ) )
Colors of variables: wff set class
Syntax hints:    \ cdif 3163    i^i cin 3165    C_ wss 3166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rab 2493  df-v 2774  df-dif 3168  df-in 3172  df-ss 3179
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator