| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > inssddif | Unicode version | ||
| Description: Intersection of two classes and class difference. In classical logic, such as Exercise 4.10(q) of [Mendelson] p. 231, this is an equality rather than subset. (Contributed by Jim Kingdon, 26-Jul-2018.) |
| Ref | Expression |
|---|---|
| inssddif |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 3393 |
. . 3
| |
| 2 | ssddif 3407 |
. . 3
| |
| 3 | 1, 2 | mpbi 145 |
. 2
|
| 4 | difin 3410 |
. . 3
| |
| 5 | 4 | difeq2i 3288 |
. 2
|
| 6 | 3, 5 | sseqtri 3227 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rab 2493 df-v 2774 df-dif 3168 df-in 3172 df-ss 3179 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |