![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > inssddif | GIF version |
Description: Intersection of two classes and class difference. In classical logic, such as Exercise 4.10(q) of [Mendelson] p. 231, this is an equality rather than subset. (Contributed by Jim Kingdon, 26-Jul-2018.) |
Ref | Expression |
---|---|
inssddif | ⊢ (𝐴 ∩ 𝐵) ⊆ (𝐴 ∖ (𝐴 ∖ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss1 3220 | . . 3 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
2 | ssddif 3233 | . . 3 ⊢ ((𝐴 ∩ 𝐵) ⊆ 𝐴 ↔ (𝐴 ∩ 𝐵) ⊆ (𝐴 ∖ (𝐴 ∖ (𝐴 ∩ 𝐵)))) | |
3 | 1, 2 | mpbi 143 | . 2 ⊢ (𝐴 ∩ 𝐵) ⊆ (𝐴 ∖ (𝐴 ∖ (𝐴 ∩ 𝐵))) |
4 | difin 3236 | . . 3 ⊢ (𝐴 ∖ (𝐴 ∩ 𝐵)) = (𝐴 ∖ 𝐵) | |
5 | 4 | difeq2i 3115 | . 2 ⊢ (𝐴 ∖ (𝐴 ∖ (𝐴 ∩ 𝐵))) = (𝐴 ∖ (𝐴 ∖ 𝐵)) |
6 | 3, 5 | sseqtri 3058 | 1 ⊢ (𝐴 ∩ 𝐵) ⊆ (𝐴 ∖ (𝐴 ∖ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ∖ cdif 2996 ∩ cin 2998 ⊆ wss 2999 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-tru 1292 df-fal 1295 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ral 2364 df-rab 2368 df-v 2621 df-dif 3001 df-in 3005 df-ss 3012 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |