ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inssddif GIF version

Theorem inssddif 3240
Description: Intersection of two classes and class difference. In classical logic, such as Exercise 4.10(q) of [Mendelson] p. 231, this is an equality rather than subset. (Contributed by Jim Kingdon, 26-Jul-2018.)
Assertion
Ref Expression
inssddif (𝐴𝐵) ⊆ (𝐴 ∖ (𝐴𝐵))

Proof of Theorem inssddif
StepHypRef Expression
1 inss1 3220 . . 3 (𝐴𝐵) ⊆ 𝐴
2 ssddif 3233 . . 3 ((𝐴𝐵) ⊆ 𝐴 ↔ (𝐴𝐵) ⊆ (𝐴 ∖ (𝐴 ∖ (𝐴𝐵))))
31, 2mpbi 143 . 2 (𝐴𝐵) ⊆ (𝐴 ∖ (𝐴 ∖ (𝐴𝐵)))
4 difin 3236 . . 3 (𝐴 ∖ (𝐴𝐵)) = (𝐴𝐵)
54difeq2i 3115 . 2 (𝐴 ∖ (𝐴 ∖ (𝐴𝐵))) = (𝐴 ∖ (𝐴𝐵))
63, 5sseqtri 3058 1 (𝐴𝐵) ⊆ (𝐴 ∖ (𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  cdif 2996  cin 2998  wss 2999
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rab 2368  df-v 2621  df-dif 3001  df-in 3005  df-ss 3012
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator