ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inssddif GIF version

Theorem inssddif 3344
Description: Intersection of two classes and class difference. In classical logic, such as Exercise 4.10(q) of [Mendelson] p. 231, this is an equality rather than subset. (Contributed by Jim Kingdon, 26-Jul-2018.)
Assertion
Ref Expression
inssddif (𝐴𝐵) ⊆ (𝐴 ∖ (𝐴𝐵))

Proof of Theorem inssddif
StepHypRef Expression
1 inss1 3323 . . 3 (𝐴𝐵) ⊆ 𝐴
2 ssddif 3337 . . 3 ((𝐴𝐵) ⊆ 𝐴 ↔ (𝐴𝐵) ⊆ (𝐴 ∖ (𝐴 ∖ (𝐴𝐵))))
31, 2mpbi 144 . 2 (𝐴𝐵) ⊆ (𝐴 ∖ (𝐴 ∖ (𝐴𝐵)))
4 difin 3340 . . 3 (𝐴 ∖ (𝐴𝐵)) = (𝐴𝐵)
54difeq2i 3218 . 2 (𝐴 ∖ (𝐴 ∖ (𝐴𝐵))) = (𝐴 ∖ (𝐴𝐵))
63, 5sseqtri 3158 1 (𝐴𝐵) ⊆ (𝐴 ∖ (𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  cdif 3095  cin 3097  wss 3098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-ext 2136
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ral 2437  df-rab 2441  df-v 2711  df-dif 3100  df-in 3104  df-ss 3111
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator