ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inssddif GIF version

Theorem inssddif 3445
Description: Intersection of two classes and class difference. In classical logic, such as Exercise 4.10(q) of [Mendelson] p. 231, this is an equality rather than subset. (Contributed by Jim Kingdon, 26-Jul-2018.)
Assertion
Ref Expression
inssddif (𝐴𝐵) ⊆ (𝐴 ∖ (𝐴𝐵))

Proof of Theorem inssddif
StepHypRef Expression
1 inss1 3424 . . 3 (𝐴𝐵) ⊆ 𝐴
2 ssddif 3438 . . 3 ((𝐴𝐵) ⊆ 𝐴 ↔ (𝐴𝐵) ⊆ (𝐴 ∖ (𝐴 ∖ (𝐴𝐵))))
31, 2mpbi 145 . 2 (𝐴𝐵) ⊆ (𝐴 ∖ (𝐴 ∖ (𝐴𝐵)))
4 difin 3441 . . 3 (𝐴 ∖ (𝐴𝐵)) = (𝐴𝐵)
54difeq2i 3319 . 2 (𝐴 ∖ (𝐴 ∖ (𝐴𝐵))) = (𝐴 ∖ (𝐴𝐵))
63, 5sseqtri 3258 1 (𝐴𝐵) ⊆ (𝐴 ∖ (𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  cdif 3194  cin 3196  wss 3197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rab 2517  df-v 2801  df-dif 3199  df-in 3203  df-ss 3210
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator