ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inssun Unicode version

Theorem inssun 3412
Description: Intersection in terms of class difference and union (De Morgan's law). Similar to Exercise 4.10(n) of [Mendelson] p. 231. This would be an equality, rather than subset, in classical logic. (Contributed by Jim Kingdon, 25-Jul-2018.)
Assertion
Ref Expression
inssun  |-  ( A  i^i  B )  C_  ( _V  \  (
( _V  \  A
)  u.  ( _V 
\  B ) ) )

Proof of Theorem inssun
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 pm3.1 755 . . . . 5  |-  ( ( x  e.  A  /\  x  e.  B )  ->  -.  ( -.  x  e.  A  \/  -.  x  e.  B )
)
2 eldifn 3295 . . . . . 6  |-  ( x  e.  ( _V  \  A )  ->  -.  x  e.  A )
3 eldifn 3295 . . . . . 6  |-  ( x  e.  ( _V  \  B )  ->  -.  x  e.  B )
42, 3orim12i 760 . . . . 5  |-  ( ( x  e.  ( _V 
\  A )  \/  x  e.  ( _V 
\  B ) )  ->  ( -.  x  e.  A  \/  -.  x  e.  B )
)
51, 4nsyl 629 . . . 4  |-  ( ( x  e.  A  /\  x  e.  B )  ->  -.  ( x  e.  ( _V  \  A
)  \/  x  e.  ( _V  \  B
) ) )
6 elun 3313 . . . 4  |-  ( x  e.  ( ( _V 
\  A )  u.  ( _V  \  B
) )  <->  ( x  e.  ( _V  \  A
)  \/  x  e.  ( _V  \  B
) ) )
75, 6sylnibr 678 . . 3  |-  ( ( x  e.  A  /\  x  e.  B )  ->  -.  x  e.  ( ( _V  \  A
)  u.  ( _V 
\  B ) ) )
8 elin 3355 . . 3  |-  ( x  e.  ( A  i^i  B )  <->  ( x  e.  A  /\  x  e.  B ) )
9 vex 2774 . . . 4  |-  x  e. 
_V
10 eldif 3174 . . . 4  |-  ( x  e.  ( _V  \ 
( ( _V  \  A )  u.  ( _V  \  B ) ) )  <->  ( x  e. 
_V  /\  -.  x  e.  ( ( _V  \  A )  u.  ( _V  \  B ) ) ) )
119, 10mpbiran 942 . . 3  |-  ( x  e.  ( _V  \ 
( ( _V  \  A )  u.  ( _V  \  B ) ) )  <->  -.  x  e.  ( ( _V  \  A )  u.  ( _V  \  B ) ) )
127, 8, 113imtr4i 201 . 2  |-  ( x  e.  ( A  i^i  B )  ->  x  e.  ( _V  \  (
( _V  \  A
)  u.  ( _V 
\  B ) ) ) )
1312ssriv 3196 1  |-  ( A  i^i  B )  C_  ( _V  \  (
( _V  \  A
)  u.  ( _V 
\  B ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    \/ wo 709    e. wcel 2175   _Vcvv 2771    \ cdif 3162    u. cun 3163    i^i cin 3164    C_ wss 3165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator