ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intexrabim Unicode version

Theorem intexrabim 4114
Description: The intersection of an inhabited restricted class abstraction exists. (Contributed by Jim Kingdon, 27-Aug-2018.)
Assertion
Ref Expression
intexrabim  |-  ( E. x  e.  A  ph  ->  |^| { x  e.  A  |  ph }  e.  _V )

Proof of Theorem intexrabim
StepHypRef Expression
1 intexabim 4113 . 2  |-  ( E. x ( x  e.  A  /\  ph )  ->  |^| { x  |  ( x  e.  A  /\  ph ) }  e.  _V )
2 df-rex 2441 . 2  |-  ( E. x  e.  A  ph  <->  E. x ( x  e.  A  /\  ph )
)
3 df-rab 2444 . . . 4  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
43inteqi 3811 . . 3  |-  |^| { x  e.  A  |  ph }  =  |^| { x  |  ( x  e.  A  /\  ph ) }
54eleq1i 2223 . 2  |-  ( |^| { x  e.  A  |  ph }  e.  _V  <->  |^| { x  |  ( x  e.  A  /\  ph ) }  e.  _V )
61, 2, 53imtr4i 200 1  |-  ( E. x  e.  A  ph  ->  |^| { x  e.  A  |  ph }  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   E.wex 1472    e. wcel 2128   {cab 2143   E.wrex 2436   {crab 2439   _Vcvv 2712   |^|cint 3807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139  ax-sep 4082
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-in 3108  df-ss 3115  df-int 3808
This theorem is referenced by:  cardcl  7099  isnumi  7100  cardval3ex  7103  clsval  12471
  Copyright terms: Public domain W3C validator