ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intexrabim Unicode version

Theorem intexrabim 4139
Description: The intersection of an inhabited restricted class abstraction exists. (Contributed by Jim Kingdon, 27-Aug-2018.)
Assertion
Ref Expression
intexrabim  |-  ( E. x  e.  A  ph  ->  |^| { x  e.  A  |  ph }  e.  _V )

Proof of Theorem intexrabim
StepHypRef Expression
1 intexabim 4138 . 2  |-  ( E. x ( x  e.  A  /\  ph )  ->  |^| { x  |  ( x  e.  A  /\  ph ) }  e.  _V )
2 df-rex 2454 . 2  |-  ( E. x  e.  A  ph  <->  E. x ( x  e.  A  /\  ph )
)
3 df-rab 2457 . . . 4  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
43inteqi 3835 . . 3  |-  |^| { x  e.  A  |  ph }  =  |^| { x  |  ( x  e.  A  /\  ph ) }
54eleq1i 2236 . 2  |-  ( |^| { x  e.  A  |  ph }  e.  _V  <->  |^| { x  |  ( x  e.  A  /\  ph ) }  e.  _V )
61, 2, 53imtr4i 200 1  |-  ( E. x  e.  A  ph  ->  |^| { x  e.  A  |  ph }  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   E.wex 1485    e. wcel 2141   {cab 2156   E.wrex 2449   {crab 2452   _Vcvv 2730   |^|cint 3831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-sep 4107
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-in 3127  df-ss 3134  df-int 3832
This theorem is referenced by:  cardcl  7158  isnumi  7159  cardval3ex  7162  clsval  12905
  Copyright terms: Public domain W3C validator