ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intexrabim Unicode version

Theorem intexrabim 4201
Description: The intersection of an inhabited restricted class abstraction exists. (Contributed by Jim Kingdon, 27-Aug-2018.)
Assertion
Ref Expression
intexrabim  |-  ( E. x  e.  A  ph  ->  |^| { x  e.  A  |  ph }  e.  _V )

Proof of Theorem intexrabim
StepHypRef Expression
1 intexabim 4200 . 2  |-  ( E. x ( x  e.  A  /\  ph )  ->  |^| { x  |  ( x  e.  A  /\  ph ) }  e.  _V )
2 df-rex 2491 . 2  |-  ( E. x  e.  A  ph  <->  E. x ( x  e.  A  /\  ph )
)
3 df-rab 2494 . . . 4  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
43inteqi 3891 . . 3  |-  |^| { x  e.  A  |  ph }  =  |^| { x  |  ( x  e.  A  /\  ph ) }
54eleq1i 2272 . 2  |-  ( |^| { x  e.  A  |  ph }  e.  _V  <->  |^| { x  |  ( x  e.  A  /\  ph ) }  e.  _V )
61, 2, 53imtr4i 201 1  |-  ( E. x  e.  A  ph  ->  |^| { x  e.  A  |  ph }  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   E.wex 1516    e. wcel 2177   {cab 2192   E.wrex 2486   {crab 2489   _Vcvv 2773   |^|cint 3887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188  ax-sep 4166
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-in 3173  df-ss 3180  df-int 3888
This theorem is referenced by:  cardcl  7295  isnumi  7296  cardval3ex  7299  lspval  14196  clsval  14627
  Copyright terms: Public domain W3C validator