Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > intexrabim | Unicode version |
Description: The intersection of an inhabited restricted class abstraction exists. (Contributed by Jim Kingdon, 27-Aug-2018.) |
Ref | Expression |
---|---|
intexrabim |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intexabim 4147 | . 2 | |
2 | df-rex 2459 | . 2 | |
3 | df-rab 2462 | . . . 4 | |
4 | 3 | inteqi 3844 | . . 3 |
5 | 4 | eleq1i 2241 | . 2 |
6 | 1, 2, 5 | 3imtr4i 201 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wex 1490 wcel 2146 cab 2161 wrex 2454 crab 2457 cvv 2735 cint 3840 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 ax-sep 4116 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-in 3133 df-ss 3140 df-int 3841 |
This theorem is referenced by: cardcl 7170 isnumi 7171 cardval3ex 7174 clsval 13182 |
Copyright terms: Public domain | W3C validator |