Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > intexrabim | Unicode version |
Description: The intersection of an inhabited restricted class abstraction exists. (Contributed by Jim Kingdon, 27-Aug-2018.) |
Ref | Expression |
---|---|
intexrabim |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intexabim 4131 | . 2 | |
2 | df-rex 2450 | . 2 | |
3 | df-rab 2453 | . . . 4 | |
4 | 3 | inteqi 3828 | . . 3 |
5 | 4 | eleq1i 2232 | . 2 |
6 | 1, 2, 5 | 3imtr4i 200 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wex 1480 wcel 2136 cab 2151 wrex 2445 crab 2448 cvv 2726 cint 3824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4100 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-in 3122 df-ss 3129 df-int 3825 |
This theorem is referenced by: cardcl 7137 isnumi 7138 cardval3ex 7141 clsval 12761 |
Copyright terms: Public domain | W3C validator |