ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intexrabim Unicode version

Theorem intexrabim 4148
Description: The intersection of an inhabited restricted class abstraction exists. (Contributed by Jim Kingdon, 27-Aug-2018.)
Assertion
Ref Expression
intexrabim  |-  ( E. x  e.  A  ph  ->  |^| { x  e.  A  |  ph }  e.  _V )

Proof of Theorem intexrabim
StepHypRef Expression
1 intexabim 4147 . 2  |-  ( E. x ( x  e.  A  /\  ph )  ->  |^| { x  |  ( x  e.  A  /\  ph ) }  e.  _V )
2 df-rex 2459 . 2  |-  ( E. x  e.  A  ph  <->  E. x ( x  e.  A  /\  ph )
)
3 df-rab 2462 . . . 4  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
43inteqi 3844 . . 3  |-  |^| { x  e.  A  |  ph }  =  |^| { x  |  ( x  e.  A  /\  ph ) }
54eleq1i 2241 . 2  |-  ( |^| { x  e.  A  |  ph }  e.  _V  <->  |^| { x  |  ( x  e.  A  /\  ph ) }  e.  _V )
61, 2, 53imtr4i 201 1  |-  ( E. x  e.  A  ph  ->  |^| { x  e.  A  |  ph }  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   E.wex 1490    e. wcel 2146   {cab 2161   E.wrex 2454   {crab 2457   _Vcvv 2735   |^|cint 3840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157  ax-sep 4116
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-rab 2462  df-v 2737  df-in 3133  df-ss 3140  df-int 3841
This theorem is referenced by:  cardcl  7170  isnumi  7171  cardval3ex  7174  clsval  13182
  Copyright terms: Public domain W3C validator